微型计算机控制技术 课程设计报告 班级:自动化 901 A B C 一、课题名称 大林算法控制系统设计 二、课程设计目的 课程设计是课程教学中的一项重要内容,是达到教学目标的重要环节,是综合性较强的实践教学环节,它对帮助学生全面牢固地掌握课堂教学内容、培养学生的实践和实际动手能力、提高学生全面素质具有很重要的意义。 《计算机控制技术》是一门理论性、实用性和实践性都很强的课程,课程设计环节应占有更加重要的地位。计算机控制技术的课程设计是一个综合运用知识的过程,它需要控制理论、程序设计、硬件电路设计等方面的知识融合。通过课程设计,加深对学生控制算法设计的认识,学会控制算法的实际应用,使学生从整体上了解计算机控制系统的实际组成,掌握计算机控制系统的整体设计方法和设计步骤,编程调试,为从事计算机控制系统的理论设计和系统的调试工作打下基础。 三、课程设计内容 已知被控对象的传递函数为: 采样周期为 T=0.5s,用大林算法设计数字控制器D(z),并分析是否会产生振铃现象。 四、课程设计要求 1、用大林算法设计数字控制器D(z) ; 2、在 Simulink 仿真环境画出仿真框图及得出仿真结果,画出数字控制; 3、绘制并分析数字控制器的振铃现象; 4、对振铃现象进行消除; 5、得出仿真结果并进行仿真分析; 6、程序清单及简要说明; 7、成设计说明书(列出参考文献,以及仿真结果及分析)。 五、大林算法控制系统方案设计 在控制系统应用中,纯滞后环节往往是影响系统动态特性的不利因素。工业过程中如钢铁,热工和化工过程中往往会有纯滞后环节。对这类系统,控制器如果设计不当,常常会引起系统的超调和持续振荡。 由于纯延迟的存在,使被控量对干扰、控制信号不能即时的反映。即使调节机构接受控制信号后立即动作,也要经过纯延时间t后才到达被控量,使得系统产生较大的超调量和较长的调节时间。当t>=0.5T(T 为对象的时间常数)时,实践证明用 PID 控制很难获得良好的控制品质。 对这类具有纯滞后环节系统的控制要求,快速性往往是次要的,通常要求系统稳定,要求系统的超调量要小,而调整时间允许在较多的采样周期内结束。 这样的一种大时间滞后系统采用 PID 控制或采用最少拍控制,控制效果往往不好。本节介绍能满足上述要求的一种直接数字控制器设计方法 ——达林(Dahlin )算法 ( )1seG ss 达林算法的设计思想:设计一个合适的数字控制器,使整个闭环系统相当于一个...