直线圆锥曲线与向量的综合问题高考考什么知识要点:1.直线与圆锥曲线的公共点的情况00),(02CBxAxyxfcbyax曲线:直线:)0'''(2CyByA或(1)没有公共点方程组无解( 2)一个公共点0,0)0)AiiAi相切相交(3)两个公共点0,0A2.连结圆锥曲线上两个点的线段称为圆锥曲线的弦,要能熟练地利用方程的根与系数关系来计算弦长,常用的弦长公式:212122111ABkxxyyk3.以平面向量作为工具,综合处理有关长度、角度、共线、平行、垂直、射影等问题4. 几何与向量综合时可能出现的向量内容(1) 给出直线的方向向量或;(2)给出与相交 , 等于已知过的中点 ; (3)给出, 等于已知是的中点 ; (4)给出, 等于已知 A、B与 PQ的中点三点共线 ; (5) 给出以下情形之一: ①;②存在实数;③若存在实数, 等于已知三点共线 . (6) 给出,等于已知是的定比分点,为定比,即(7) 给出, 等于已知, 即是直角 , 给出, 等于已知是钝角 , 给出, 等于已知是锐角。(8)给出, 等于已知是的平分线。(9)在平行四边形中,给出,等于已知是菱形 ; (10) 在平行四边形中,给出,等于已知是矩形 ; (11)在中,给出,等于已知是的外心(三角形外接圆的圆心,三角形的外心是三角形三边垂直平分线的交点);(12) 在中,给出,等于已知是的重心(三角形的重心是三角形三条中线的交点);(13)在中,给出,等于已知是的垂心(三角形的垂心是三角形三条高的交点);(14)在中,给出等于已知通过的内心;(15)在中,给出等于已知是的内心(三角形内切圆的圆心,三角形的内心是三角形三条角平分线的交点);(16) 在中,给出, 等于已知是中边的中线 ; 高考怎么考主要题型:1.三点共线问题;2.公共点个数问题;3.弦长问题;4.中点问题; 5.定比分点问题;6.对称问题; 7.平行与垂直问题;8.角的问题。近几年平面向量与解析几何交汇试题考查方向为(1)考查学生对平面向量知识的简单运用,如向量共线、垂直、定比分点。( 2)考查学生把向量作为工具的运用能力,如求轨迹方程,圆锥曲线的定义,标准方程和几何性质,直线与圆锥曲线的位置关系。特别提醒:法和韦达定理是解决直线和圆锥曲线位置关系的重要工具。高考真题1. [2012 ·上海卷 ] 若 n=(-2,1)是直线 l 的一个法向量,则l 的倾斜角的大小为 ________(结果用反三角函数值表示 )..arctan2[解析] 考查直线的法向量和倾斜角,关键是求出直线的斜率.由已知...