学习必备欢迎下载离散数学及其应用重要名词中英对应以及重要概念解释与举例1 The Foundations: Logic and Proofs (逻辑与证明)1.1 Propositional Logic(命题逻辑)Propositions(命题)—— declarative sentence that is either true or false, but not both. 判断性语句,正确性唯一。Truth Table (真值表)Conjunction (合取, “与”,and),Disjunction (析取, or,“相容或 ”),Exclusive(异或),Negation(非, not), Biconditional (双条件,双向,if and only if )Translating English Sentences 1.2 Propositional Equivalences(命题等价)Tautology (永真式、重言式),Contradiction (永假式、矛盾式),Contingency (偶然式)Logical Equivalences(逻辑等价) —— Compound propositions that have the same truth values in all possible cases are called logical equivalent. (真值表相同的式子,p<->q 是重言式)Logical Equivalences —— Page24 Disjunctive normal form(DNF,析取范式 ) Conjunctive normal form(CNF ,合取范式 ) 见 Page27~29 1.3 Predicates and Quantifiers (谓词和量词)Predicates—— 谓词,说明关系、特征的修饰词Quantifiers —— 量词? Universal Quantifier( 全称量词 ) "学习必备欢迎下载全部满足? Existential Quantifier(存在量词 ) $至少有一个Binding Variables( 变量绑定,量词作用域与重名的问题) Logical Equivalence Involving Quantifiers Negating Quantified Expressions( 量词否定表达:否定全称=存在否定,否定存在=全程否定 ) Translating from English into Logical Expressions(自然语句转化为逻辑表达) Using Quantifiers in System Specifications Examples from Lewis Carrol —— 全称量词与条件式(p->q) 搭配,存在量词与合取式搭配。1.4 Nested Quantifiers (量词嵌套) Page59 12、13 "x"yP(x,y) ? "y "x P(x,y) $x $yP(x,y) ? $y$xP(x,y) "x"yP(x,y) T $y"xP(x,y) "y"xP(x,y) T $x"yP(x,y) $x"yP(x,y) T "y$xP(x,y) $y"xP(x,y) T "x$yP(x,y) "x$yP(x,y) T $y$xP(x,y) "y$xP(x,y) T $x$yP(x,y) Prenex normal form(PNF 前束范式 ):所有量词变换到最前面,否定变换到后面。...