废旧锂电池中有价金属回收 一、背景 锂离子二次电池具有重量轻、容量大、使用寿命长等优点, 已成为目前广泛使用的便携式电源。随着手机、手提电脑、数码相机等电器的普及, 锂电池的生产量和消费量直线飙升, 巨大的电池生产消费带来了数目惊人的废电池。然而由于技术和经济等方面的原因, 目前锂电池回收率很低,大量废旧锂电池被遗弃, 给环境造成巨大威胁和污染, 同时对资源也是一种浪费, 分析表明: 锂离子电池平均含钴12%~18% , 锂1. 2%~1. 8%, 铜8%~10% , 铝4%~8% , 壳体合金30%。因此,如何在治理“电池污染”的同时, 实现废旧电池有色金资源尤其是钴的综合循环回收, 已成为社会关注的热点难题。 二、方案的提出 研究表明使用H2SO4 + H2O2体系可以浸出80%的钴;使用机械切割、筛选除铁铝铜、研磨过筛, 后对筛过物采用H2SO4 + H2O2 体系浸出, 钴的浸出率高于95%; 先用N2甲基吡咯烷酮溶解PVDF后过筛, 并使用高浓度HCl对钴酸锂进行浸出;使用两级热处理两级过筛后高温煅烧的方法预选粉料, 分别采用HNO3和HNO3+2H2O2体系对筛后粉料浸出,在极大的液固比下HNO3+2H2O2体系的浸出率可达95%; 通过碱煮除铝、盐酸溶钴的方法的处理钴锂膜使钴的浸出率高于99%。这些研究在浸出后的除杂过程都很相似, 均为使用湿法分离技术使钴以氢氧化物或草酸盐的形式从液相中析出已达到分离的目的 。 本实验所使用样品由某废旧锂电池拆解厂提供, 该厂通过手工拆壳、电池芯粉碎、筛分, 得到各种锂电池芯的混合粉料。这些混合粉料来自于大规模的废旧锂电池的收购, 具有很强的代表性, 本研究的目的在于为该厂后续工业化综合回收废旧锂电池中多种有色金属提供依据。 三、工艺流程 本实验流程为碱浸除铝后使用稀酸液浸泡的方法有效地破坏有机物与铜箔的粘附, 再使用水力旋分达到金属铜、稀酸、电池活性物质的分离, 通过H2SO4 + H2O2的低液固比选择性浸出钴、锂, 所得浸液几乎不含铁, 使用水解沉淀的方法沉淀浸液中的铝、铜, 再萃取分离钴、锂, 直接使用稀草酸液反萃有机相的得草酸钴, 萃余相循环配酸以达到富集锂的目的, 当锂富集到一定程度下使用碳酸沉锂得碳酸锂。综上所述, 实验工艺流程见图1。 表1 粉料分析( %, 质量分数) Co Li Al Cu Fe 17. 28 2. 18 5. 95 10. 75 1. 49 图1 废旧锂电池有价金属回收流程图 废物混合动力锂离子电池 碱溶 还原 AL 酸洗和涡流分类 还原Cu 低酸浸出液固比...