电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

异方差与自相关

异方差与自相关_第1页
1/13
异方差与自相关_第2页
2/13
异方差与自相关_第3页
3/13
七、 异方差与自相关 一、背景 我们讨论如果古典假定中的同方差和无自相关假定不能得到满足,会引起什么样的估计问题呢?另一方面,如何发现问题,也就是发现和检验异方差以及自相关的存在性也是一个重要的方面,这个部分就是就这个问题进行讨论。 二、知识要点 1、引起异方差的原因及其对参数估计的影响 2、异方差的检验(发现异方差) 3、异方差问题的解决办法 4、引起自相关的原因及其对参数估计的影响 5、自相关的检验(发现自相关) 6、自相关问题的解决办法 (时间序列部分讲解) 三、要点细纲 1 、引起异方差的原因及其对参数估计的影响 原因:引起异方差的众多原因中,我们讨论两个主要的原因,一是模型的设定偏误,主要指的是遗漏变量的影响。这样,遗漏的变量就进入了模型的残差项中。当省略的变量与回归方程中的变量有相关关系的时候,不仅会引起内生性问题,还会引起异方差。二是截面数据中总体各单位的差异。 后果:异方差对参数估计的影响主要是对参数估计有效性的影响。在存在异方差的情况下,OLS 方法得到的参数估计仍然是无偏的,但是已经不具备最小方差性质。一般而言,异方差会引起真实方差的低估,从而夸大参数估计的显著性,即是参数估计的 t 统计量偏大,使得本应该被接受的原假设被错误的拒绝。 2 、异方差的检验 (1)图示检验法 由于异方差通常被认为是由于残差的大小随自变量的大小而变化,因此,可以通过散点图的方式来简单的判断是否存在异方差。具体的做法是,以回归的残差的平方2ie 为纵坐标,回归式中的某个解释变量ix 为横坐标,画散点图。如果散点图表现出一定的趋势,则可以判断存在异方差。 (2)Goldfeld-Qu andt 检验 Goldfeld-Qu andt 检验又称为样本分段法、集团法,由 Goldfeld 和 Qu andt 1965年提出。这种检验的思想是以引起异方差的解释变量的大小为顺序,去掉中间若干个值,从而把整个样本分为两个子样本。用两个子样本分别进行回归,并计算残差平方和。用两个残差平方和构造检验异方差的统计量。 Goldfeld-Qu andt 检验有两个前提条件,一是该检验只应用于大样本(n>30),并且要求满足条件:观测值的数目至少是参数的二倍; 二是除了同方差假定不成立以外,要求其他假设都成立,随机项没有自相关并且服从正态分布。Goldfeld-Qu andt 检验假设检验设定为:H0:具有同方差, H1:具有递增型异方差。具体实施步骤为: ①将观测值按照解释变量 x 的大小顺...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

异方差与自相关

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部