第 1 页 共 6 页 南昌大学 2008~2009 学年第二学期期末考试试卷 试卷编号: ( B )卷 课程编号: X60040006 课程名称: 弹 性 力 学 考试形式: 闭 卷 适用班级: 土木06 级 姓名: 学号: 班级: 学院: 建 筑 工 程 学 院 专业: 考试日期: 题号 一 二 三 四 五 六 七 八 九 十 总分 累分人 签名 题分 20 15 15 15 15 20 100 得分 考生注意事项:1 、本试卷共 6 页,请查看试卷中是否有缺页或破损。如有立即举手报告以便更换。 2 、考试结束后,考生不得将试卷、答题纸和草稿纸带出考场。 一、简答题(每小题5分,共 20分) 1、弹性力学的五个基本假定是什么? 2、在什么情形下弹性力学问题可作为平面应变问题分析? 3、说明按应力求解弹性力学问题的基本思路。 4、应用弹性力学的位移变分法时,位移分量必须满足的边界条件和方程是什么?能否由位移变分法求得问题的精确解,为什么? 得分 评阅人 第 2 页 共 6 页 二、计算题(15分) 已知某弹性力学平面问题的应力分量为 21xQ xyC x , 22yC y, 2312xyQ yC xy 其中Q 为已知。若体力不计,试根据应力分量须满足的方程确定未知系数1C 、2C 和3C 。 得分 评阅人 第 3 页 共 6 页 三、计算题(15分) 如图所示墙体密度为 ,高度为h ,宽度为b ,且hb,在墙体两侧受到匀布剪力q作用。现取函数22()xAyByC ,试考察 能否作为应力函数,如能则进一步求解应力分量x 、y 和xy 。 得分 评阅人 第 4 页 共 6 页 四、计算题(15分) 楔形体在顶端受集中力偶作用,单位厚度上的力偶矩为M ,试用应力函数sin 2BC 求应力分量 、 和(体力不计)。 (体力为零时极坐标中应力分量与应力函数的关系式为 22211 , 22 , 1 ) 得分 评阅人 第 5 页 共 6 页 五、计算题(15分) 图示矩形薄板宽度为a 而高度为b ,左边及下边受连杆支承,在右边受线性分布拉力,最大集度为q 。不计体力,取泊松比0 ,设位移分量为1uA x,1vB y,试用位移变分法求解位移。 (平面应力问题弹性体形变势能公式为 222212dd221AEuvuvvuUx yxyxyxy...