数学中的抽象美 在绘画与教学中,美有客观标准。画家讲究结构、线条、造型、肌理,而教学家则讲究真实、正确、新奇、普遍、„„ —哈尔莫斯 数学家因为对发现的纯粹爱好和其对脑力劳动产品的美的欣赏,创造了抽象和理想化的真理。 —R.D.Carmicheal 自然几乎不可能不对数学推理的美抱有偏爱。 —C.N.杨 “数学是研究现实中数量关系和空间形式的科学”(恩格斯)。 数学虽不研究事物的质,但任一事物必有量和形,这样两种事物如有相同的量和形,便可用相同的数学方法,因而数学必然也必须抽象。 我们生活在受精确的数学定律制约的宇宙之中,而数学正是书写宇宙的文字(伽利略语)。 物理、化学、工程乃至许多科学技术领域中的基本原理,都是用数学语言表达的。万有引力的思想,历史上早就有之,但只有当牛顿用精确的数学公式表达时,才成为科学中最重要、最著名的万有引力定律。爱因斯坦的广义相对论的产生与表达,也得益于黎曼几何所提供的数学框架和手段。 在数学的创造性工作中,抽象分析是一种常用的重要方法,这是基于数学本身的特点——抽象性的。数学中不少新的概念、新的学科、新的分支的产生,是通过“抽象分析”得到的。 当数学家的思想变得更抽象时,他会发现越来越难于用物理世界检验他的直觉。为了证实直觉,就必须更详细地进行证明,更细心地下定义,以及为达到更高水平的精确性而进行的持续努力,这样做也使数学本身得以发展了。 数学的简洁性在很大的程度上是源自数学的抽象性,换句话说:数学概念正是从众多事物共同属性中抽象出来的。而对日益扩展的数学知识总体进行简化、廓清和统一化时,抽象更是必不可少的。 如前所述,微积分的创始人牛顿和莱布尼兹分别从力学(研究物体的速度、加速度)和几何学(讨论曲线的切线)不同角度引入建立同一概念、创立同一学科——微分学;而他们又分别从“反运算”和“微分求和”不同角度建立另一门学科——积分学。这也使微分、积分(微积分)成为一个不可分离的整体学科。 同一个拉普拉斯(Laplace)方程 它既可用来表示稳定的热传导过程平衡态、溶质动态平衡、弹性薄膜的平衡,也可表示静态电磁场的位势、真空中的引力势、不可压流体的定常运动等等。 这个方程由于抽象性而成为普适(当然,方程自身的形式也是很美的,除了符号美外,它还具形式美:对称、整齐),这显然也是数学本身的一大特点。 抽象是数学的美感中的一个重要部分,还因为数学的抽象可以把人们置于脱开周围事物纷扰...