1.2.1充分条件与必要条件一、教学内容解析:1. 教学内容:“充分条件与必要条件”是在 p q 时,对 p 与q 之间关系的一种描述,是一个数学概念.“ p q ”与“ p 是q 的充分条件”、“q 是 p 的必要条件”之间是同一逻辑关系的三种不同描述形式,前者是符号表示,后两者是文字表示.通过对命题真假的判断,研究命题中 p 与q 之间的关系,所以判断充分条件与必要条件的关键是分清条件与结论,再判断命题的真假.考虑到充分条件与必要条件的相对性,在判断上还需关注方向性.另外,充分条件与必要条件和集合知识的联系在丰富知识外延拓展的同时,从“形”上(韦恩图表示集合关系)帮助我们进一步理解充分条件与必要条件的内涵.2. 知识地位:“充分条件与必要条件”是高中人教 A 版《数学》选修2-1 第一章《简单逻辑用语》第二节的内容.逻辑是研究思维规律的学科,逻辑用语在数学中具有重要的作用 .学习数学需要全面准确地理解概念,正确地进行表述、判断和推理,这些都离不开对逻辑知识的掌握和运用.而“充分条件与必要条件”是数学中常用的逻辑用语,在数学学科中大量的命题用它们来叙述“. 充分条件与必要条件”是在前一节“命题及其关系”的基础产生的新知,也为后续“充要条件”的学习提供了保障.另外,本节课的学习可以对我们已经学习过的数学知识加以巩固和提升,同时能够体现出逻辑用语的工具价值,也可以更好地应用于今后的学习.3. 思想方法:充分条件与必要条件的知识学习过程中蕴含着数学发现中的观察、归纳、总结等方法,在知识的形成与运用中还体现了数学思维的合理性与严密性,以及数形结合的数学思想,这些都是数学的精髓.4. 教学重点:充分条件与必要条件.5. 教学难点:必要条件概念的理解.二、教学目标设置:1 1. 理解充分条件、必要条件的意义; 能正确判断是否是充分条件或必要条件.2. 通过对充分条件与必要条件的研究,使学生掌握有关的逻辑知识,以保证推理的合理性和论证的严密性.3. 通过以学生为主体的教学方法,让学生自己构造数学命题,体验获取知识的感受;4. 通过对充分条件和必要条件与集合间的联系的教学,建立概念间的多元联系,培养同学们多角度审视问题的习惯.三、学生学情分析:1.教学有利因素:学生在初中阶段已经接触过命题、真假命题,高中教材在本节课教学之前安排了命题、命题的形式(若 p 则 q )和四种命题的学习,以及学生日常生活中已有大量逻辑经验的积累都为...