1 1 .4 土的应力应变特性 1 .4 .1 土应力应变关系的非线性 1 .4 .2 土的剪胀性 1 .4 .3 土体变形的弹塑性 1 .4 .4 土应力应变的各向异性 1 .4 .5 土的结构性 1 .4 .6 土的流变性 1 .4 .7 影响土应力应变关系的应力条件 由于土是岩石风化而成的碎散颗粒的集合体,一般包含有固、液、气三相,在其形成的漫长的地质过程中,受风化、搬运、沉积、固结和地壳运动的影响,其应力应变关系十分复杂,并且与诸多因素有关。其中主要的应力应变特性是其非线性、剪胀(缩)性和弹塑性。主要的影响因素是应力水平(Stress lev el)、应力路径(Stress path)和应力历史(Stress history ),亦称 3S 影响。 1 .4 .1 土应力应变关系的非线性 由于土由碎散的固体颗粒组成,土宏观的变形主要不是由于颗粒本身变形,而是由于颗粒间位置的变化。这样在不同应力水平下由相同应力增量而引起的应变增量就不会相同,亦即表现出非线性。 图 2‐3‐1 表示土的常规三轴压缩试验的一般结果,其中实线表示密实砂土或超固结粘土,虚线表示松砂或正常固结粘土。 从图(a)可以看到,正常固结粘土和松砂的应力随应变增加而增加,但增加速率越来越慢,最后逼近一渐近线;而在密砂和超固结土的试验曲线中,应力开始随应变增加而增加,达到一个峰值之后,应 2 力随应变增加而下降,最后也趋于稳定。在塑性理论中,前者称为应变硬化(或加工硬化),后者称为应变软化(或加工软化)。应变软化过程实际上是一种不稳定过程,有时伴随着应力的局部化——剪切带的产出现,其应力应变曲线对一些影响因素比较敏感。而且由于其应力应变间不成单值函数关系,所以反映土的应变软化的数学模型一般形式复杂,难以准确反映这种应力应变特点;此外,反映应变软化的数值计算方法也有较大难度。 1 .4 .2 土的剪胀性 由于土是碎散的颗粒集合,在各向等压或等比压缩时,孔隙减少,从而发生较大的体积压缩。这种体积压缩大部分是不可恢复的,如图 2‐3‐2 所示。 在图2‐3‐1(b)中,可以发现,在三轴试验中,对于密砂或强超固结粘土偏差应力σ1-σ3增加引起了轴应变 ε1 的增加,但除开始时少量体积压缩(正体应变)外,发生明显的体胀(负体应变)。由于在常规三轴压缩试验中,平均主应力增量 ∆ p =1/3(σ1− σ3)在加载过程中总是正的,不可能是体积的弹性回弹,因而这种体应变只能是由剪应力引起的,被称为剪胀性(Dilatancy...