发车间隔教学目标1、 熟练运用柳卡解题方法解多次相遇和追及问题2、 通过左图体会发车间隔问题重点——发车间隔不变(路程不变)3、 能够熟练应用三个公式解间隔问题知识精讲发车问题要注意的是两车之间的距离是不变的。可以用线等距离连一些小物体来体会进车队的等距离前进。还要理解参照物的概念有助于解题。接送问题关键注意每队行走的总时间和总路程,是寻找比例和解题的关键。一、常见发车问题解题方法间隔发车问题,只靠空间理想象解稍显困难,证明过程对快速解题没有帮助,但是一旦掌握了 3 个基本方法,一般问题都可以迎刃而解。(一)、在班车里——即柳卡问题不用基本公式解决,快速的解法是直接画时间——距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。(二)、在班车外——联立 3 个基本公式好使(1)汽车间距=(汽车速度+行人速度)×相遇事件时间间隔(2)汽车间距=(汽车速度-行人速度)×追及事件时间间隔(3)汽车间距=汽车速度×汽车发车时间间隔(三)、三个公式并理解汽车间距=相对速度×时间间隔二、综上总结发车问题可以总结为如下技巧(1)、一般间隔发车问题。用 3 个公式迅速作答;(2)、求到达目的地后相遇和追及的公共汽车的辆数。标准方法是:画图——尽可能多的列 3 个好使公式——结合 s 全程=v×t-结合植树问题数数。(3)当出现多次相遇和追及问题——柳卡【例 1】 每天中午有一条轮船从哈佛开往纽约,且每天同一时刻也有一艘轮船从纽约开往哈佛.轮船在3-2-8.发车间隔.题库教师版page 1 of 9途中均要航行七天七夜.试问:某条从哈佛开出的轮船在到达纽约前(途中)能遇上几艘从纽约开来的轮船?【考点】行程问题之发车间隔【难度】2 星【题型】解答【解析】这就是著名的柳卡问题.下面介绍的法国数学家柳卡·斯图姆给出的一个非常直观巧妙的解法.他先画了如下一幅图:这是一张运行图.在平面上画两条平行线,以一条直线表示哈佛,另一条直线表示纽约.那么,从哈佛或纽约开出的轮船,就可用图中的两组平行线簇来表示.图中的每条线段分别表示每条船的运行情况.粗线表示从哈佛驶出的轮船在海上的航行,它与其他线段的交点即为与对方开来轮船相遇的情况.从图中可以看出,某天中午从哈佛开出的一条轮船(图中用实线表示)会与从纽约开出的 15 艘轮船相遇(图中用虚线表示).而且在这相遇的 15 艘船中,有 1...