1. 甲、乙、丙三人在A、 B 两块地植树,A 地要植900棵,B 地要植1250棵。已知甲、乙、丙每天分别能植树24,30,32棵,甲在A 地植树,丙在B 地植树,乙先在A 地植树,然后转到B 地植树。两块地同时开始同时结束,乙应在开始后第几天从A 地转到B 地? 总棵数是900+1250=2150棵,每天可以植树24+30+32=86棵 需要种的天数是2150÷86=25天 甲 25天完成24×25=600棵 那么乙就要完成900-600=300棵之后,才去帮丙 即做了300÷30=10天之后即第11天从A 地转到B 地。 2. 有三块草地,面积分别是5,15,24亩。草地上的草一样厚,而且长得一样快。第一块草地可供10头牛吃30天, 第二块草地可供28头牛吃45天, 问第三块地可供多少头牛吃80天? 这是一道牛吃草问题,是比较复杂的牛吃草问题。 把每头牛每天吃的草看作1份。 因为第一块草地5亩面积原有草量+5亩面积30天长的草=10×30=300份 所以每亩面积原有草量和每亩面积30天长的草是300÷5=60份 因为第二块草地15亩面积原有草量+15亩面积45天长的草=28×45=1260份 所以每亩面积原有草量和每亩面积45天长的草是1260÷15=84份 所以45-30=15天,每亩面积长84-60=24份 所以,每亩面积每天长24÷15=1.6份 所以,每亩原有草量60-30×1.6=12份 第三块地面积是24亩,所以每天要长1.6×24=38.4份,原有草就有24×12=288份 新生长的每天就要用38.4头牛去吃,其余的牛每天去吃原有的草,那么原有的草就要够吃 80天,因此288÷80=3.6头牛 所以,一共需要38.4+3.6=42头牛来吃。 两种解法: 解法一: 设每头牛每天的吃草量为1,则每亩30天的总草量为:10x30/5=60;每亩45天的总草量为:28*45/15=84那么每亩每天的新生长草量为(84-60) /( 45-30) =1.6每亩原有草量为60-1.6x30=12,那么24亩原有草量为12x24=288,24亩 80天新长草量为24x1.6x80=3072,24亩80天共有草量3072+288=3360,所有3360/80=42(头) 解法二:10头牛30天吃5亩可推出30头牛30天吃15亩,根据28头牛45天吃15木,可以推出 15亩每天新长草量(28x45-30x30) /( 45-30) =24;15亩原有草量:1260-24x45=180;15亩 80天所需牛180/80+24(头)24亩需牛:( 180/80+24) x( 24/15) =42头 3. 某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元。在保证一星期内完成的前提下,选择哪个队单独承包费用最少...