上海中小学课外辅导专家 泽仕学堂教务处 1 泽仕学堂学科教师辅导讲义 学员姓名:钱伟杰 辅导科目:数学 年级:初一 学科教师:张先安 授课日期及时段 课 题 不等式与不等式组 重点、难点、考点 应用一元一次方程组解决实际问题的能力,体会不等式(组)的特点和作用,掌握运用它们解决问题的一般方法,提高分析问题、解决问题的能力 学习目标 建立一元一次不等式解决实际问题的过程,体会不等式(组)的特点和作用,掌握运用它们解决问题的一般方法,提高分析问题、解决问题的能力,增强创新精神和应用数学的意识。 教学内容 一.知识框架 二、知识概念 1.用符号“<”“>”“≤ ”“≥”表示大小关系的式子叫做不等式。 2.不等式的解:使不等式成立的未知数的值,叫做不等式的解。 3.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。 4.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是 1,像这样的不等式,叫做一元一次不等式。 5.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成 上海中小学课外辅导专家 泽仕学堂教务处 2 了一个一元一次不等式组。 6.不等式:用不等号将两个解析式连结起来所成的式子。在一个式子中的数的关系,不全是等号,含不等符号的式子,那它就是一个不等式.例如2x+2y≥2xy,sinx≤1,ex>0 ,2x<3,5x≠5 等 。 不等式分为严格不等式与非严格不等式。一般地,用纯粹的大于号、小于号“>”“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)≥”“≤”连接的不等式称为非严格不等式,或称广义不等式。 7.解不等式可遵循的一些同解原理 主要的有: ①不等式F(x)< G(x)与不等式 G(x)>F(x)同解。 ②如果不等式F(x) < G(x)的定义域被解析式H( x )的定义域所包含,那么不等式 F(x)0,那么不等式F(x)H(x)G(x)同解。 ④不等式F(x)G(x)>0与不等式同解;不等式F(x)G(x)<0与不等式同解 8.定理与性质 不等式的性质: ①如果x>y,那么yy;...