精品文档---下载后可任意编辑 平行线的性质(2)(新授课)【理论支持】瑞士心理学家皮亚杰教育的主要目的是促进儿童智力的进展,培育儿童的思维力和制造力。学生在认知进展过程中存在着个体差异,他不主张给学生那些明显超出他们进展水平的材料,即不主张毫无根据地或人为地加速学生的进展,教育应按学生的年龄特点进行,并保持学生的学习主动性和自主性,使他们积极地参加到学习活动中来。《数学课程标准》指出:学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜想、验证、推理与沟通等数学活动。内容的呈现应采纳不同的表达方式,以满足多样化的学习需求。有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作沟通是学生学习数学的重要方式。由于学生所处的文化环境、家庭背景和自身思维方式的不同,学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。数学课程要关注学生的生活经验和知识体验,在合作沟通与自主探究的氛围中学习课程。并指出:对学生数学学习的评价,既要关注学生学习的结果,更要关注学生在学习过程中的变化和进展;既要关注学生数学学习的水平,更要关注他们在数学实践活动中所表现出来的情感和态度。“相交线与平行线”这一章对七年级学生来说是新的知识,但并不陌生。这一部分知识是学生以后学习平面几何与立体几何的基础,在生活中也是处处可见的,所以很重要。有了这些知识,我们才能更好的理解几何中的一些位置关系与性质,这也是图形变换的基础。本节课讨论的内容是平行线的性质和判定的区别和应用,不仅关系到以后对“图形与几何”学习的理解,更是培育学生有条理的思考和表达的一个重要环节。因此,让学生正确而深刻地理解平行线的性质与判定的关系和应用是学好本章的关键。教学对象分析:1.初一学生性格开朗活泼,对新奇事物特别敏感,且较易接受,因此,教学过程中创设的问题情境应较生动活泼,直观形象,且贴近学生的生活,从而引起学生的有意注意。 2.初一学生的概括能力较弱,推理能力还有待进展,所以在教学时,可让学生充分探讨、分析,帮助他们直观形象地感知。3.初一学生已经具备了一定的学习能力,所以本节课中,应多为学生制造自主学习、合作学习的机会,让他们主动参加、勤于动手、从而乐于探究。总之,通过本节课的讨论,旨在培育学生的逻辑推理能力,经历识图、画图、说理到简单推理的过程,培育学生的推...