七年级数学下期期末复习提纲第六章一元一次方程一、基本概念(一)方程的变形法则法则1:方程两边都或同一个数或同一个,方程的解不变。例如:在方程7-3x=4 左右两边都减去7,得到新方程:-3x+3=4-7。在方程6x=-2x-6 左右两边都加上4x,得到新方程:8x=-6。移项:将方程中的某些项改变符号后,从方程的一边移动到另一边,这样的变形叫做移项,注意移项要变号。例如:(1)将方程x-5=7 移项得:x=7+5即x=12(2)将方程4x=3x-4 移项得:4x-3x=-4 即x=-4法则2:方程两边都除以或同一个的数,方程的解不变。例如:(1)将方程-5x=2 两边都除以-5 得:x=-52(2)将方程32 x=13 两边都乘以32 得:x=92这里的变形通常称为“将未知数的系数化为1”。注意:(1)如遇未知数的系数为整数,“系数化为1”时,就要除以这个整数;如遇到未知数的系数为分数,“系数化为1”时,就要乘以这个分数的倒数。(2)不论上一乘以或除以数时,都要注意结果的符号。方程的解的概念:能够使方程左右两边都相等的未知数的值,叫做方程的解。求不方程的解的过程,叫做解方程。(二)一元一次方程的概念及其解法1.定义:只含有一个未知数,并且含有未知数的式子都是,未知数的次数是,这样的方程叫做一元一次方程。例如:方程7-3x=4、6x=-2x-6 都是一元一次方程。而这些方程5x2-3x+1=0、2x+y=l-3y、1x-1 =5 就不是一元一次方程。2.一元一次方程的一般式为:ax+b=0(其中a、b 为常数,且a≠0)一元一次方程的一般式为:ax=b(其中a、b 为常数,且a≠0)3.解一元一次方程的一般步骤步骤:去分母,去括号,移项,合并同类项,未知数的系数化为1。注意:(1)方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。(2)“去分母”指去掉方程两边各项系数的分母;去分母时,要求各分母的最小公倍数,去掉分母后,注意添括号。去分母时,不要忘记不等式两边的每一项都乘以最小公倍数(即公分母)(三)一元一次方程的应用1.纯数学上的应用:(1)一元一次方程定义的应用;(2)方程解的概念的应用;(3)代数中的应用;(4)公式变形等。2.实际生活上的应用:(1)调配问题;(2)行程问题;(3)工程问题;(4)利息问题;(5)面积问题等。3.探索性应用:这类问题与上面的几类问题有联系,但也有区别,有时是一种没有结论的问题,需要你给出结论并解答。第七章二元一次方程组...