最佳线性滤波理论起源于 40年代美国科学家 Wiener和前苏联科学家Kо л м о г о р о в等人的研究工作, 后人统称为维纳滤波理论。从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。 为了克服这一缺点,60年代 Kalman把状态空间模型引入滤波理论,并导出了一套递推估计算法,后人称之为卡尔曼滤波理论。 卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型, 利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。它适合于实时处理和计算机运算。 现设线性时变系统的离散状态防城和观测方程为: X(k) = F(k,k-1)·X(k-1)+T(k,k-1)·U(k-1) Y(k) = H(k)·X(k)+N(k) 其中 X(k)和 Y(k)分别是 k时刻的状态矢量和观测矢量 F(k,k-1)为状态转移矩阵 U(k)为 k时刻动态噪声 T(k,k-1)为系统控制矩阵 H(k)为k时刻观测矩阵 N(k)为k时刻观测噪声 则卡尔曼滤波的算法流程为: 1.预估计X(k)^= F(k,k-1)·X(k-1) 2.计算预估计协方差矩阵 C(k)^=F(k,k-1)×C(k)×F(k,k-1)'+T(k,k-1)×Q(k)×T(k,k-1)' Q(k) = U(k)×U(k)' 3.计算卡尔曼增益矩阵 K(k) = C(k)^×H(k)'×[H(k)×C(k)^×H(k)'+R(k)]^(-1) R(k) = N(k)×N(k)' 4.更新估计 X(k)~=X(k)^+K(k)×[Y(k)-H(k)×X(k)^] 5.计算更新后估计协防差矩阵 C(k)~ = [I-K(k)×H(k)]×C(k)^×[I-K(k)×H(k)]'+K(k)×R(k)×K(k)' 6. X(k+1) = X(k)~ C(k+1) = C(k)~ 重复以上步骤 其 c语言实现代码如下: #include "stdlib.h" #include "rinv.c" int lman(n,m,k,f,q,r,h,y,x,p,g) int n,m,k; double f[],q[],r[],h[],y[],x[],p[],g[]; { int i,j,kk,ii,l,jj,js; double *e,*a,*b; e=malloc(m*m*sizeof(double)); l=m; if (l