【一】需求分析 课程题目是排序算法的实现,课程设计一共要设计八种排序算法。这八种算法共包括:堆排序,归并排序,希尔排序,冒泡排序, 快速排序,基数排序,折半插入排序,直接插入排序。 为了运行时的方便,将八种排序方法进行编号,其中1 为堆排序,2 为归并排序,3 为希尔排序,4 为冒泡排序,5 为快速排序,6 为基数排序,7 为折半插入排序8 为直接插入排序。 【二】概要设计 1.堆排序 ⑴算法思想:堆排序只需要一个记录大小的辅助空间,每个待排序的记录仅占有一个存储空间。将序列所存储的元素A[N]看做是一棵完全二叉树的存储结构,则堆实质上是满足如下性质的完全二叉树:树中任一非叶结点的元素均不大于(或不小于)其左右孩子(若存在)结点的元素。算法的平均时间复杂度为O(N log N)。 ⑵程序实现及核心代码的注释: for(j=2*i+1; j<=m; j=j*2+1) { if(j=su[j]) break; su[i]=su[j]; i=j; } su[i]=temp; } void dpx() //堆排序 { int i,temp; cout<<"排序之前的数组为:"<=0; i--) { head(i,N); } for(i=N-1; i>0; i--) { temp=su[i]; su[i]=su[0]; su[0]=temp; head(0,i-1); } cout<<"排序之后的数组为:"<