精品文档---下载后可任意编辑1、分式的定义:例:下列式子中,15x+ y 、8a2b、-9a23 、5 a−b2x− y 、3a2−b24、2-2a 、1m 、5xy61x 、12 、x2+12、3xyπ、3x+ y 、a+ 1m 中分式的个数为( ) (A) 2 (B) 3 (C) 4 (D) 5练习题:(1)下列式子中,是分式的有 . ⑴; ⑵;⑶;⑷;⑸;⑹.(2)下列式子,哪些是分式?; ;; ;;.2、分式有,无意义,总有意义:例 1:当 x 时,分式1x−5 有意义; 例 2:分式2x+12−x 中,当x=____ 时,分式没有意义例 3:当 x 时,分式1x2−1 有意义。 例 4:当 x 时,分式xx2+1 有意义例 5:,满足关系时,分式无意义;例 6:无论 x 取什么数时,总是有意义的分式是( )A.2 xx2+1 B.x2x+1 C.3 xx3+1 D.x−5x2例 7:使分式 有意义的 x 的取值范围为( )A. B. C. D.例 8:要是分式x−2(x+1)(x−3)3、分式的值为零:例 1:当 x 时,分式1−2aa+1 的值为 0 例 2:当 x 时,分式x2−1x+1 的值为 0例 3:假如分式|a|−2a+2 的值为为零,则 a 的值为( ) A. B.2 C. 例 4:能使分式x2−xx2−1 的值为零的所有的值是 ( )A x=0 B x=1 Cx=0 或x=1 Dx=0 或x=±1例 5:要使分式x2−9x2−5 x+6 的值为 0,则 x 的值为( )A.3 或-3 B.3 C.-3 D 2例 6:若a|a|+1=0,则 a4、分式的基本性质的应用:例 1:xya =aby ; 6 x( y+z )3( y+z )2 = y+z ;假如5(3a+1)7(3a+1)=57 成立,则 a 的取值范围是________;例 2:例 3:假如把分式a+2ba+b 中的 a 和 b 都扩大 10 倍,那么分式的值( )A、扩大 10 倍 B、缩小 10 倍 C、是原来的 20 倍 D、不变例 4:假如把分式10 xx+ y 中的 x,y 都扩大 10 倍,则分式的值( ) A.扩大 100 倍 B.扩大 10 倍 C.不变 D.缩小到原来的110例 5:假如把分式xyx+ y 中的 x 和 y 都扩大 2 倍,即分式的值( )A、扩大 2 倍; B、扩大 4 倍; C、不变; D 缩小 2 倍例 6:假如把分式x−yx+ y 中的 x 和 y 都扩大 2 倍,即分式的值( )A、扩大 2 倍; B、扩大 4 倍; C、不变; D 缩小 2 倍例 7:假如把分式x−yxy中的 x 和 y 都扩大 2 倍,即分式的值( )A、扩大 2 倍; B、扩大 4 倍; C、不变; D 缩小12 倍例 8:若把分式x+3 y2 x的 x、y 同时缩小...