电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

导数的综合大题及其分类.

导数的综合大题及其分类._第1页
1/23
导数的综合大题及其分类._第2页
2/23
导数的综合大题及其分类._第3页
3/23
导 数 的 综 合 应 用 是 历 年 高 考 必 考 的 热 点 , 试 题 难 度 较 大 , 多 以 压 轴 题 形 式 出 现 , 命 题 的 热 点 主 要 有 利 用 导 数 研 究 函 数 的 单 调 性 、极 值 、 最 值 ; 利 用 导 数 研 究 不 等 式 ; 利 用 导 数 研 究 方 程 的 根 (或 函 数 的 零 点 ); 利 用 导 数 研 究 恒 成 立 问 题 等 . 体 现 了 分 类 讨 论 、 数形 结 合 、 函 数 与 方 程 、 转 化 与 化 归 等 数 学 思 想 的 运 用 . 题 型 一 利 用 导 数 研 究 函 数 的 单 调 性 、 极 值 与 最 值 题 型 概 览 : 函 数 单 调 性 和 极 值 、 最 值 综 合 问 题 的 突 破 难 点 是 分 类 讨 论 . ( 1) 单 调 性 讨 论 策 略 : 单 调 性 的 讨 论 是 以 导 数 等 于 零 的 点 为 分 界 点 , 把 函 数 定 义 域 分 段 , 在 各 段 上 讨 论 导 数 的 符 号 , 在 不 能 确 定 导 数 等 于 零的 点 的 相 对 位 置 时 , 还 需 要 对 导 数 等 于 零 的 点 的 位 置 关 系 进 行 讨 论 . (2)极 值 讨 论 策 略 : 极 值 的 讨 论 是 以 单 调 性 的 讨 论 为 基 础 , 根 据 函 数 的 单 调 性 确 定 函 数 的 极 值 点 . (3)最 值 讨 论 策 略 : 图 象 连 续 的 函 数 在 闭 区 间 上 最 值 的 讨 论 , 是 以 函 数 在 该 区 间 上 的 极 值 和 区 间 端 点 的 函 数 值 进 行 比 较 为 标 准 进 行 的 , 在极 值 和 区 间 端 点 函 数 值 中 最 大 的 为 最 大 值 , 最 小 的 为 最 小 值 . 已知函数f(x)=x-1x,g(x)=aln x(a∈R). (1)当a≥-2 时,求F(x)=f(x)-g(x)的单调区间; (2)设h(x)=f(x)+g(x),且h(x)有两个极值点为x1,x2,其中x1∈0,12 ,求h(x1)-h(x2)的最小值. [审题程序] 第一步:在定义域内,依据F′(x)=0 根的情况对F′(x)的符号讨论; 第二步:整合讨论结果,确定单调区间; 第三步:建立x1、x2 及a 间的关系及取值范围; 第四步:通过代换转化...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

导数的综合大题及其分类.

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部