小学数学奥数基础教程(六年级) 本教程共3 0 讲 比和比例 比的概念是借助于除法的概念建立的。 两个数相除叫做两个数的比。例如,5÷6可记作5∶6。 比值。 表示两个比相等的式子叫做比例(式)。如,3∶7=9∶21。判断两个比是否成比例,就要看它们的比值是否相等。两个比的比值相等,这两个比能组成比例,否则不能组成比例。 在任意一个比例中,两个外项的积等于两个内项的积。即:如果a∶b=c∶d,那么a×d=b×c。 两个数的比叫做单比,两个以上的数的比叫做连比。例如a∶b∶c。连比中的“∶”不能用“÷”代替,不能把连比看成连除。把两个比化为连比,关键是使第一个比的后项等于第二个比的前项,方法是把这两项化成它们的最小公倍数。例如, 甲∶乙=5∶6,乙∶丙=4∶3, 因为[6,4]=12,所以 5∶ 6=10∶ 12, 4∶3=12∶9, 得到甲∶乙∶丙=10∶12∶9。 例1 已知 3∶(x-1)=7∶9,求 x。 解: 7×(x-1)=3×9, x-1=3×9÷7, 例2 六年级一班的男、女生比例为3∶2,又来了4名女生后,全班共有44人。求现在的男、女生人数之比。 分析与解:原来共有学生44-4=40(人),由男、女生人数之比为3∶2知,如果将人数分为5份,那么男生占3份,女生占2份。由此求出 女生增加4人变为16+4=20(人),男生人数不变,现在男、女生人数之比为 24∶20=6∶5。 在例2中,我们用到了按比例分配的方法。 将一个总量按照一定的比分成若干个分量叫做按比例分配。按比例分配的方法是将按已知比分配变为按份数分配,把比的各项相加得到总份数,各项与总份数之比就是各个分量在总量中所占的分率,由此可求得各个分量。 例3 配制一种农药,其中生石灰、硫磺粉和水的重量比是1∶2∶12,现在要配制这种农药2700千克,求各种原料分别需要多少千克。 分析:总量是2700千克,各分量的比是1∶2∶12,总份数是1+2+12=15, 答:生石灰、硫磺粉、水分别需要180,360和2160千克。 在按比例分配的问题中,也可以先求出每份的量,再求出各个分量。如例3中,总份数是1+2+12=15,每份的量是2700÷15=180(千克),然后用每份的量分别乘以各分量的份数,即用180千克分别乘以1,2,12,就可以求出各个分量。 例4 师徒二人共加工零件400个,师傅加工一个零件用9分钟,徒弟加工一个零件用15分钟。完成任务时,师傅比徒弟多加工多少个零件? 分析与解:解法很多,这里只用按比例分配做。师傅与徒弟的工作效率 有多少学生? 按比例分配得到 例6 某高速...