(1) 0C (2) 1xx (3) aaaxxln (4) xxee (5) axxaln1log (6) xx1ln (7) xxcossin (8)xxsincos (9) xx2sectan (10) xx2csccot (11) xxxtansecsec (12) xxxcotcsccsc (13) 211arcsinx (14) 211arccosxx (15) 211arctanxx (16) 211cotxxarc vuvu vuvuvu 2vvuvuvu xxfxf (1) cdx0 (2) )1(ln)1(111cxcxdxx (3) cadxaxaxln1 (4) cxxdxcossin (5) cxxdxsincos (6) cxxdxcoslntan (7) cxxdxsinlncot (8) cxxxdxtanseclnsec (9) cxxxdxcotcsclncsc (10) cxxxdx2sinsin41212 (11) cxxxdx2sincos41212 (12) cxxdxtansec2 (13) cxxdxcotcsc2 (14) cxdxxarctan211 (15)cdxaxaaxarctan1122 (16) cdxaxaxaaxln21122 (17) cxdxxarcsin211 (18)cdxaxxaarcsin221 (19) caxxdxax221ln22 (2) caxxdxax221ln22 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 对这些公式应正确熟记.可根据它们的特点分类来记. 公式(1)为常量函数0 的积分,等于积分常数. 公式(2)、(3)为幂函数 的积分,应分为与 . 当 时, , 积分后的函数仍是幂函数,而且幂次升高一次. 特别当 时,有 . 当 时, 公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为 ,故 ( , )式右边的 是在分母,不在分子,应记清. 当 时,有 . 是一个较特殊的函数,其导数与积分均不变. 应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量 .要加以区别,不要混淆.它们的不定积分所采用的公式不同. 公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式 . 公式(10)是一个关于无理函数的积分 公式(11)是一个关于有理函数的积分 一、00101101lim0nnnmmxmanmba xa xanmb xb xbnm...