1□□□□□□□□□□□□a教学目标1.系统学习中国剩余定理和新中国剩余定理2.掌握中国剩余定理的核心思想,并灵活运用知识点拨□□□□□□□□□□□□□□□1 叮叮中国数学名著《孙子算经》里有这样的问题:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?”答曰:“二十三。”此类问题我们可以称为“物不知其数”类型,又被称为“韩信点兵”。韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每 3 人一列余 1 人、5 人一列余 2 人、7 人一列余 4 人、13 人一列余 6 人……。刘邦茫然而不知其数。我们先考虑下列的问题:假设兵不满一万,每 5 人一列、9 人一列、13 人一列、17 人一列都剩 3 人,则兵有多少?首先我们先求 5、9、13、17 之最小公倍数 9945(注:因为 5、9、13、17 为两两互质的整数,故其最小公倍数为这些数的积),然后再加 3,得 9948(人)。孙子算经的作者及确实著作年代均不可考,不过根据考证,著作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。中国剩余定理(ChineseRemainderTheorem)在近代抽象代数学中占有一席非常重要的地位。□2 叮叮我国明朝有位大数学家叫程大位,他在解答“物不知其数”问题(即:有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?)时用四句诗概括出这类问题的优秀解法:“三人同行七十稀,五树梅花廿一枝,七子团圆正月半,除百零五便得知.”这首诗就是解答此类问题的金钥匙,它被世界各国称为“中国剩余定理”(ChineseRemainderTheorem),是我国古代数学的一项辉煌成果.诗中的每一句话都表示一个步骤:三人同行七十稀,是说除以 3 所得的余数用 70 乘.五树梅花廿一枝,是说除以 5 所得的余数用 21 乘.七子团圆正月半,是说除以 7 所得的余数用 15 乘.除百零五便得知,是说把上面乘得的 3 个积加起来,减去 105 的倍数,减得差就是所求的数.此题的中国剩余定理的解法是:用 70 乘 3 除所得的余数,21 乘 5 除所得的余数,15 乘 7 除所得的余数,把这 3 个结果加起来,如果它大于 105,则减去 105,所得的差如果仍比 105 大,则继续减去 105,最后所得的整数就是所求.也就是 2x70+3x21+2x15=233,233-105=128,128-105=23为什么 70,21,15,105...