(完整版)指数与对数函数综合复习题型 1 指数与对数函数 I 题型 一、利用指数和对数函数性质比较大小 1。 (2010 安徽文)设232555322555abc(), (),(),则a,b,c 的大小关系是( ) A.a>c>b B.a>b>c C.c>a>b D.b>c>a 2、下列大小关系正确的是( ) .A 20.440.43lo g 0.3; .B20.440.4lo g 0.33; .C 20.44lo g 0.30.43; .D 0.424lo g 0.330.4 3、比较下列比较下列各组数中两个值的大小: (1)6lo g 7 ,7lo g 6 ; (2)5lo g 3,6lo g 3,7lo g 3. 4。 设0 3,lo g 3,1abc ,则, ,a b c的大小关系是( ) A. abc B。 acb C. bac D. bca 二、指数与对数运算 1、若m=lg5-lg2,则10m的值是( ) A、25 B、3 C、10 D、1 2、 若lo g [lo g (lo g)]4320x,则x 12 等于( ) A、 142 B、 122 C、 8 D、 4 3、化简计算:log2 251 ·log3 81 ·log5 91 4. 化简:24525lo g 5+lo g 0.2lo g 2+lo g 0.5 5、已知32a ,那么33lo g 82lo g 6用a 表示是( ) A、2a B、52a C、23(1)aa D 、 23aa 6、2lo g (2)lo glo gaaaMNMN,则NM 的值为( ) A、41 B、4 C、1 D、4 或 1 (完整版)指数与对数函数综合复习题型 2 7。(4)求5log38log932log2log25333 8. 设baba212,10054求的值. 9。 已知。来表示、用45log,518,9log3618baab 二、指数和对数函数过定点问题 1.函数y=ax—1(a>0,a≠1)过定点,则这个定点是( ) A.(0,1) B.(1,2) C.(-1,0.5) D.(1,1) 2.若 a > 0,则函数 11xya 的图像经过定点 ( ) A. (1 , 2 ) B 。(2 , 1) C 。(0 ,11a) D 。(2,1 + a ) 三、指数与对数函数求定义域 1、 函数112 xy的定义域为 ; 2.已知y=lg(ax+1)(a≠0)的定义域为(-∞,1),则 a 的取值范围是____________. 3。 的定义域是函数xxxy||)1(0 5、函数12log (32)yx的定义域是: ( ) A. 1, B.2 ,3 C. 2 ,13 D. 2 ,13 6。若函数f(x)=logax(0〈a〈1)在区间[a,2a]上的最大值是最小值的3 倍,则 a=( ) A.41 ...