电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

2024年最全初三数学二次函数知识点归纳总结VIP免费

2024年最全初三数学二次函数知识点归纳总结_第1页
2024年最全初三数学二次函数知识点归纳总结_第2页
2024年最全初三数学二次函数知识点归纳总结_第3页
二次函数知识点归纳及相关典型题第一部分基础知识1.定义:一般地,如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.2.二次函数y=ax2的性质(1)抛物线y=ax2的顶点是坐标原点,对称轴是y轴.(2)函数y=ax2的图像与a的符号关系.①当a>0时⇔抛物线开口向上⇔顶点为其最低点;②当a<0时⇔抛物线开口向下⇔顶点为其最高点.(3)顶点是坐标原点,对称轴是y轴的抛物线的解析式形式为y=ax2(a≠0).3.二次函数y=ax2+bx+c的图像是对称轴平行于(包括重合)y轴的抛物线.4.二次函数y=ax2+bx+c用配方法可化成:y=a(x−h)2+k的形式,其中h=−b2a,k=4ac−b24a.5.二次函数由特殊到一般,可分为以下几种形式:①y=ax2;②y=ax2+k;③y=a(x−h)2;④y=a(x−h)2+k;⑤y=ax2+bx+c.6.抛物线的三要素:开口方向、对称轴、顶点.①a的符号决定抛物线的开口方向:当a>0时,开口向上;当a<0时,开口向下;|a|相等,抛物线的开口大小、形状相同.②平行于y轴(或重合)的直线记作x=h.特别地,y轴记作直线x=0.7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.8.求抛物线的顶点、对称轴的方法(1)公式法:y=ax2+bx+c=a(x+b2a)2+4ac−b24a,∴顶点是(−b2a,4ac−b24a),对称轴是直线x=−b2a.(2)配方法:运用配方的方法,将抛物线的解析式化为y=a(x−h)2+k的形式得到顶点为(h,k),对称轴是直线x=h.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失.9.抛物线y=ax2+bx+c中,a,b,c的作用(1)a决定开口方向及开口大小,这与y=ax2中的a完全一样.(2)b和a共同决定抛物线对称轴的位置.由于抛物线y=ax2+bx+c的对称轴是直线x=−b2a,故:①b=0时,对称轴为y轴;②ba>0(即a、b同号)时,对称轴在y轴左侧;③ba<0(即a、b异号)时,对称轴在y轴右侧.(3)c的大小决定抛物线y=ax2+bx+c与y轴交点的位置.当x=0时,y=c,∴抛物线y=ax2+bx+c与y轴有且只有一个交点(0,c):①c=0,抛物线经过原点;②c>0,与y轴交于正半轴;③c<0,与y轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y轴右侧,则ba<0.10.几种特殊的二次函数的图像特征如下:函数解析式开口方向对称轴顶点坐标当a>0时开口向上当a<0时开口向下x=0(y轴)(0,0)x=0(y轴)(0,k)(h,0)(h,k)(−b2a,4ac−b24a)11.用待定系数法求二次函数的解析式(1)一般式:y=ax2+bx+c.已知图像上三点或三对x、y的值,通常选择一般式.(2)顶点式:y=a(x−h)2+k.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x轴的交点坐标x1、x2,通常选用交点式:y=a(x−x1)(x−x2).12.直线与抛物线的交点(1)y轴与抛物线y=ax2+bx+c得交点为(0,c).(2)与y轴平行的直线x=h与抛物线y=ax2+bx+c有且只有一个交点(h,ah2+bh+c).(3)抛物线与x轴的交点二次函数y=ax2+bx+c的图像与x轴的两个交点的横坐标x1、x2,是对应一元二次方程ax2+bx+c=0的两个实数根.抛物线与x轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔Δ>0⇔抛物线与x轴相交;②有一个交点(顶点在x轴上)⇔Δ=0⇔抛物线与x轴相切;③没有交点⇔Δ<0⇔抛物线与x轴相离.(4)平行于x轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k,则横坐标是ax2+bx+c=k的两个实数根.(5)一次函数y=kx+n(k≠0)的图像l与二次函数y=ax2+bx+c(a≠0)的图像G的交点,由方程组y=kx+ny=ax2+bx+c的解的数目来确定:①方程组有两组不同的解时⇔l与G有两个交点;②方程组只有一组解时⇔l与G只有一个交点;③方程组无解时⇔l与G没有交点.(6)抛物线与x轴两交点之间的距离:若抛物线y=ax2+bx+c与x轴两交点为A(x1,0),B(x2,0),由于x1、x2是方程ax2+bx+c=0的两个根,故第二部分典型习题1.抛物线y=x2+2x-2的顶点坐标是(D)A.(2,-2)B.(1,-2)C.(1,-3)D.(-1,-3)2.已知二次函数y=...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

山水人家+ 关注
实名认证
内容提供者

读万卷书,行万里路。

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部