电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

矩阵的各种运算详解

矩阵的各种运算详解_第1页
矩阵的各种运算详解_第2页
矩阵的各种运算详解_第3页
一、矩阵的线性运算 定义 1 设有两个矩阵和,矩阵与的和记作, 规定为 注:只有两个矩阵是同型矩阵时,才能进行矩阵的加法运算. 两个同型矩阵的和,即为两个矩阵对应位置元素相加得到的矩阵. 设矩阵记 , 称为矩阵的负矩阵, 显然有 . 由此规定矩阵的减法为 . 定义 2 数与矩阵 A 的乘积记作或, 规定为 数与矩阵的乘积运算称为数乘运算. 矩阵的加法与矩阵的数乘两种运算统称为矩阵的线性运算. 它满足下列运算规律: 设都是同型矩阵,是常数,则 (1) (2) ; (3) (4) (5) (6) (7) (8) 注:在数学中,把满足上述八条规律的运算称为线性运算. 二、矩阵的相乘 定义 3 设 矩阵与矩阵的乘积记作, 规定为 其中 ,( 记号常读作左乘或右乘. 注: 只有当左边矩阵的列数等于右边矩阵的行数时, 两个矩阵才能进行乘法运算. 若 ,则矩阵的元素即为矩阵的第行元素与矩阵的第列对应元素乘积的和. 即 . 矩阵的乘法满足下列运算规律(假定运算都是可行的): (1) (2) (3) (4) 注: 矩阵的乘法一般不满足交换律, 即 例如, 设 则 而 于是 且 从上例还可看出: 两个非零矩阵相乘, 可能是零矩阵, 故不能从 必然推出或 此外, 矩阵乘法一般也不满足消去律,即不能从必然推出 例如, 设 则 但 定义4 如果两矩阵相乘, 有 则称矩阵A 与矩阵B 可交换.简称A 与B 可换. 注:对于单位矩阵, 容易证明 或简写成 可见单位矩阵在矩阵的乘法中的作用类似于数1. 更进一步我们有 命题1 设是一个n 阶矩阵,则是一个数量矩阵的充分必要条件是与任何n 阶矩阵可换。 命题2 设均为n 阶矩阵,则下列命题等价: (1) (2) (3) (4) 三、线性方程组的矩阵表示 设有线性方程组 若记 则利用矩阵的乘法, 线性方程组(1)可表示为矩阵形式: (2) 其中矩阵称为线性方程组(1)的系数矩阵. 方程(2)又称为矩阵方程. 如果是方程组(1)的解, 记列矩阵 则 , 这时也称是矩阵方程(2)的解; 反之, 如果列矩阵是矩阵方程(2)的解, 即有矩阵等式成立, 则 即也是线性方程组(1)的解. 这样, 对线性方程组(1)的讨论便等价于对矩阵方程(2)的讨论. 特别地, 齐次线性方程组可以表示为 将线性方程组写成矩阵方程的形式,不仅书写方便,而且可以把线性方程组的理论与矩阵理论联系起来,这给线性方程组的讨论带来很大的便利. 四、矩阵的转置 定义 6 把矩阵的行换成同序数的列得到的新矩阵, 称为的...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

小辰3+ 关注
实名认证
内容提供者

出售各种资料和文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部