概率论与数理统计〔经管类〕考点一、《概率论与数理统计〔经管类〕》考试题型分析:根据历年考试情况来看,题型大致包括以下五种题型,各题型与所占分值如下:题号题型题量与分值第一题单项选择题〔共 10 小题,每题 2 分,共 20 分〕第二题填空题〔共 15 小题,每题 2 分,共 30 分〕第三题计算题〔共 8 小题,每题 2 分,共 16 分〕第四题综合题〔共 2 小题,每题 12 分,共 24 分〕第五题应用题〔共 1 小题,每题 10 分,共 10 分〕由各题型分值分布我们可以看出,单项选择题、填空题占试卷的 50%,考察的是根本的知识点,难度不大,考生要把该记忆的概念、性质和公式记到位。计算题和综合题主要是对前四章根本理论与根本方法的考察,要求考生不仅要牢记重要的公式,而且要能够灵活运用。应用题主要是对第七、八章容的考察,要求考生记住解题程序和公式。结合历年真题来练习,就会很容易的掌握解题思路。二、《概率论与数理统计〔经管类〕》考点说明:我们将知识点按考察几率与重要性分为三个等级,即一级重点、二级重点、三级重点,其中,一级重点为必考点,本次考试考察频率高;二级重点为次重点,考察频率较高;三级重点为预测考点,考察频率一般,但有可能考察的知识点。第一章 随机事件与概率1.随机事件的关系与计算 P3-5 〔一级重点〕〔填空、简答〕事件的包含与相等、和事件、积事件、互不相容、对立事件的概念2.古典概型中概率的计算 P9 〔二级重点〕〔选择、填空、计算,多以选择题空题考察〕记住古典概型事件概率的计算公式3. 利用概率的性质计算概率 P11-12 〔一级重点〕〔选择、填空〕,〔考得多〕等,要能灵活运用。4. 条件概率的定义 P14 〔一级重点〕〔选择、填空〕记住条件概率的定义和公式:5. 全概率公式与贝叶斯公式 P15-16 〔二级重点〕(计算)记住全概率公式和贝叶斯公式,并能够运用它们。一般说来,假如假设干因素〔也就是事件〕对某个事件的发生产生了影响,求这个事件发生的概率时要用到全概率公式;假如这个事件发生了,要去追究原因,即求另一个事件发生的概率时,要用到贝叶斯公式,这个公式也叫逆概公式。6. 事件的独立性〔概念与性质〕P18-20〔一级重点〕(选择、填空)定义:假设,那么称 A 与 B 相互独立。结论:假设 A 与 B 相互独立,那么 A 与,与 B,与都相互独立。7. n 重贝努利试验中事件 A 恰好发生 k 次的概率公式 P21〔一级重点〕〔选...