分式章节综合训练(培优)例 1:m=时,分式(m−1)(m−3)m2−3m+2的值为 0.例 2.要使分式没有意义,求 的值.例 3. 若 ,的值扩大为原来的 倍,下列分式的值如何变化?⑴⑵⑶例 4. 化简:例 5.计算:1x( x+1)+1( x+1)(x+2)+1(x+2)( x+3)⋅¿ ¿例 6. 已知 3x-4y-z=0,2x+y-8z=0,求的值.例 7.已知|3a+b−1|+(5a−52 b)2=0.求( −3ab)2.( ab3−a3b2 )3÷(−6ba2.)2的值.课练习:1.[ 23 x− 2x+ y ( x+ y3x −x−y )]÷x− yx,其中 5x+3y=02. 若分式1−b2b2+1 的值是负数,则 b 满足( )A.b<0B.b≥1C.b<1D.b>13. 假如分式|y|−3y2+2 y−3 的值为 0,求 y 的值.4.下列各分式运算结果正确的是( ).① 5a3b22c.10c5a3 b4 =25c4b2 ② b2 c3a3 ⋅a2b =bc3a③1x2+1÷( x−3).1x−3=1x2+1④ xy . x−1x2−1÷ x+1xy =1A.①③B.②④C.①②D.③④6.1−3a2b−3a2b×2b2a 等于( )A.a−baB.b−abC.3a−2b3 aD.2b−3a2b7.( 1).a−ba+b − a+ba−b=______. (2).12m2−9+23−m +2m+3 =______.8.化简:(1)( 是大于 1 的整数); (2)( 是正整数)9.把下列分式中的字母 和都扩大为原来的 5 倍,分式的值有什么变化?(1) (2)10.2x( x+2)+2( x+2)(x+4) +2( x+4)( x+6)⋅¿ ¿11. 为何值时,分式有意义?12. 已知1x− 1y =3,求分式2x+3 xy−2 yx−2 xy− y 的值.13.假如x , y , z满足x+ y−5 z=0, x−y+z=0,且xyz≠0,求x2−y2z2−x2 的值.例 2:已知(x≠0 ,y≠0),求xy − yx − x2+ y2xy的值.例 4.已知xx2+1=12 ,求x2x4+1 的值.例 5.若a,b为实数,且ab=1,求:aa+1 + bb+1 ;1a+1 + 1b+1 ; 1a2+1+1b2+1例 6.已知x1+x2=3,x1 x2=1,求:1x1+ 1x2 ; x1x2+ x2x1 ; x2+1x1+1+ x1+1x2+1例 7.已知实数a,b,c 为实数,且aba+b =13 ,bcb+c =14 ,cac+a=15 .求abcab+bc+ca 的值.例 7.已知xx2−x+1=17 ,求x2x4+x2+1 的值;例 8.已知a2−3a+1=0,求下列代数式的值.(a−1a )2 ; a4+ 1a4 ; a4+a2+1a28.已知a+b+c=0,则1a2+b2−c2 +1b2+c2−a2+1c2+a2−b2=( )A.0 B.1 C.-1 D.29.1a + 1b = 5a+b ,则ba + ab=( )A.5 B.7 C.3 D.1310.已知2x−3x2−x= Ax−1 + Bx ,其中A,B 为常数,那么A+B 的值为( )A.-2 B.2 C.-4 D.411.已知2x−3x2−x−2=Ax−2− Bx+1 ,其中A,B 为常...