第一章集合与函数概念一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。(4)集合元素的三个特性使集合本身具有了确定性和整体性。3、集合的表示:{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}1.用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}2.集合的表示方法:列举法与描述法。注意啊:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+整数集Z有理数集Q实数集R关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作列举法:把集合中的元素一一列举出来,然后用一个大括号括上。描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{x|x-3>2}或{x|x-3>2}4、集合的分类:1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合3.空集不含任何元素的集合例:{X|=-5}二、例题解析例1、判断下列说法是否正确?说明理由(1)高一(2)班个子较高的同学组成的集合;(2)1,3,-1,4这些数组成的集合有4个元素;(3)由a,b,c组成的集合与由b,c,a组成的集合;(4)所有与2非常接近的数字;(5)所有与小明走的很近的朋友例2、用列举法表示下列集合(1)小于10的所有自然数组成的集合;(2)方程的所有实数根组成的集合(3)由小于15的所有质数组成的集合;例3、用描述法表示下列集合:(1)坐标平面内抛物线的点的集合;(2)所有偶数的和;(3)3和4的所有正的公倍数的集合例4、试分别用列举法和描述法表示下列集合(1)七大洲组成的集合;(2)由大于10小于16的所有整数组成的集合。例5、已知集合S是由△ABC的三边长a、b、c构成的三个元素的一个集合,那么△ABC一定不是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形例6、已知是由1、0、x组成的集合中的一个元素,试求实数x的值。例7、当则称x为A的一个“孤立元素”,求由0,1,2,3,5这五个元素构成的集合A中的“孤立元素”。例8、已知x、y、z为非零实数,代数式的值所组成的集合是M,则下列判断正确的是()A.B.C.D.例9、例10、含有三个实数的集合可表示为,也可表示为,求1.下列各组对象中不能构成集合的是()A.水浒书业的全体员工B.《优化方案》的所有书刊C.2010年考入清华大学的全体学生D.美国NBA的篮球明星2.(2011年上海高一检测)下列所给关系正确的个数是()①π∈R;②∉Q;③0∈N*;④|-4|∉N*.A.1B.2C.3D.43.集合A={一条边长为1,一个角为40°的等腰三角形}中有元素()A.2个B.3个C.4个D.无数个4.以方程x2-5x+6=0和方程x2-x-2=0的解为元素的集合中共有________个元素.1.若以正实数x,y,z,w四个元素构成集合A,以A中四个元素为边长构成的四边形可能是()A.梯形B.平行四边形C.菱形D.矩形2.设集合A只含一个元素a,则下列各式正确的是()A.0∈AB.a∉AC.a∈AD.a=A3.给出以下四个对象,其中能构成集合的有()①教2011届高一的年轻教师;②你所在班中身高超过1.70米的同学;③2010年广州亚运会的比赛项目;④1,3,5.A.1个B.2个C.3个D.4个4.若集合M={a,b,c},M中元素是△ABC的三边长,则△ABC一定不是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形5.下列各组集合,表示相等集合的是()①M={(3,2)},N={(2,3)};②M={3,2},N={2,3};③M={(1,2)},N={1,2}.A.①B.②C.③D.以上都不对6.若所有形如a+b(a∈Q、b∈Q)的数组成...