歇后语:韩信点兵 歇后语:韩信点兵 韩信点兵——多多益善 汉高祖刘邦曾问大将韩信:“你看我能带多少兵?”韩信斜了刘邦一眼说:“你顶多能带十万兵吧!”汉高祖心中有三分不悦,心想:你竟敢小看我!“那你呢?”韩信傲气十足地说:“我呀,当然是多多益善啰!”刘邦心中又添了三分不兴奋,牵强说:“将军如此大才,我很佩服。现在,我有一个小小的问题向将军请教,凭将军的大才,答起来一定不费吹灰之力的。”韩信满不在乎地说:“可以可以。”刘邦狡黠地一笑,传令叫来一小队士兵隔墙站队,刘邦发令:“每三人站成一排。”队站好后,小队长进来报告:“最后一排只有二人。”“刘邦又传令:“每五人站成一排。”小队长报告:“最后一排只有三人。”刘邦再传令:“每七人站成一排。”小队长报告:“最后一排只有二人。”刘邦转脸问韩信:“敢问将军,这队士兵有多少人?”韩信脱口而出:“二十三人。”刘邦大惊,心中的不快已增至十分,心想:“此人本事太大,我得想法找个岔子把他杀掉,免生后患。”一面则佯装笑脸夸了几句,并问:“你是怎样算的?”韩信说:“臣幼得黄石公传授《孙子算经》,这孙子乃鬼谷子的弟子,算经中载有此题之算法,口诀是: 三人同行七十稀, 五树梅花开一枝, 七子团圆正月半, 除百零五便得知。” 刘邦出的这道题,可用现代语言这样表述: “一个正整数,被 3 除时余 2,被 5 除时余 3,被 7 除时余2,假如这数不超过 100,求这个数。” 《孙子算经》中给出这类问题的解法:“三三数之剩二,则置一百四十;五五数之剩三,置六十三;七七数之剩二,置三十;并之得二百三十三,以二百一十减之,即得。凡三三数之剩一,则置七十;五五数之剩一,则置二十一;七七数之剩一,则置十五,一百六以上,以一百五减之,即得。”用现代语言说明这个解法就是: 首先找出能被 5 与 7 整除而被 3 除余 1 的数 70,被 3 与 7 整除而被 5 除余 1 的数 21,被 3 与 5 整除而被 7 除余 1 的数 15。 所求数被 3 除余 2,则取数 70×2=140,140 是被 5 与 7 整除而被 3 除余 2 的数。 所求数被 5 除余 3,则取数 21×3=63,63 是被 3 与 7 整除而被 5 除余 3 的数。(www.kt250.com) 所求数被 7 除余 2,则取数 15×2=30,30 是被 3 与 5 整除而被 7 除余 2 的数。 又,140+63+30=233,由于 63 与 30 都能被 3 整除,故 233与 140 ...