2024 一次函数人教版数学八年级上册教案 一次函数是函数中的一种,一般形如 y=kx+b(k,b 是常数,k≠0),其中 x 是自变量,y 是因变量。特别地,当 b=0 时,y=kx(k为常数,k≠0),y 叫做 x 的正比例函数。以下是我整理的一次函数人教版数学八年级上册教案,欢迎大家借鉴与参考! 《一次函数》教学设计 一、内容和内容解析 1.内容 正比例函数的概念. 2.内容解析 一次函数是最基本的初等函数,是初中函数学习的重要内容,正比例函数是特别的一次函数,也是初中学生接触到的第一种函数,要通过对正比例函数内容的学习,为后续类比学习一般一次函数打好基础,了解讨论函数的基本套路和方法,积累讨论一般一次函数乃至其他各种函数的基本经验. 对正比例函数概念的学习,既要借助具体的函数进一步加深对函数概念的理解,即实际问题的两个变量中,当一个变量变化时,另一个变量随着它的变化而变化,而且对于这个变量的每一个确定的值,另一个变量都有唯一确定的值与之对应,这是理解正比例函数的核心;也要加强对正比例函数基本特征的认识,即根据实际问题构建的函数模型中,函数和自变量每一对对应值的比值是一定的,等于比例系数,反映在函数解析式上,这些函数都是常数与自变量的积的形式,这是正比例函数的基本特征. 本节课主要是通过对生活中大量实际问题的分析,写出变量间的函数关系式,观察比较概括出这些函数关系式具有的共同特征,根据共同特征抽象出正比例函数的基本模型,归纳得出正比例函数的概念,再用正比例函数的概念对具体函数进行辨析,对实际事例进行分析,根据已知条件写出正比例函数的解析式. 基于以上分析,确定本节课的教学重点:正比例函数的概念. 二、目标和目标解析 1.目标 (1)经历正比例函数概念的形成过程,理解正比例函数的概念; (2)能根据已知条件确定正比例函数的解析式,体会函数建模思想. 2.目标解析 达成目标(1)的标志是:通过对实际问题的分析,知道自变量和对应函数成正比例的特征,能概括抽象出正比例函数的概念. 达成目标(2)的标志是:能根据实际问题中的已知条件确定变量间的正比例函数关系式,将实际问题抽象为函数模型,体会函数建模思想. 三、教学问题诊断分析 正比例函数是是初中学生接触到的第一种初等函数,由于函数概念比较抽象,学生对函数基本概念理解未必深刻,在对实际问题进行分析过程中,需进一步强化对函数概念的理解:即实际问题的两个变量中,当一个变量变化时,另...