第三教时教材:定义域 目的:要求学生掌握分式函数、根式函数定义域的求法,同时掌握表示法。 过程:一、复习: 1.函数的定义(近代定义) 2.函数的三要素 今天研究的课题是函数的定义域—自变量 x 取值的集合(或者说:原象的集合 A)叫做函数 y=f(x)的定义域。二、认定:给定函数时要指明函数的定义域。对于用解析式表示的函数如果没有给出定义域,那么就认为函数的定义域是指使函数表达式有意义的自变量取值的集合。例一、(P54 例二)求下列函数的定义域: 1. 2。 解:要使函数有意义,必须: 解:要使函数有意义,必须: 3x+2≥0 即 x 2 即 x≥ ∴函数的定义域是: ∴函数的定义域是: 3。解:要使函数有意义,必须: ∴函数的定义域是: 例二、求下列函数的定义域: 1. 2. 解:要使函数有意义,必须: 解:要使函数有意义,必须: 即: ∴函数的定义域为: ∴函数的定义域为: {x |} { x|}3. 解:要使函数有意义,必须: ∴函数的定义域为: 4. 解:要使函数有意义,必须: ∴函数的定义域为: 5。 解:要使函数有意义,必须: 即 x< 或 x> ∴函数的定义域为: 例三、若函数的定义域是一切实数,求实数 a 的取值范围。1 解:例四、若函数的定义域为[1,1],求函数的定义域。解:要使函数有意义,必须:∴函数的定义域为: 例五、设的定义域是[3,],求函数的定义域。 解:要使函数有意义,必须: 得: ∵ ≥0 ∴ ∴函数的定域义为:三、小结: 求(整式、分式、根式)函数定义域的基本法则。四、 P57 习题 2、2 1—3 (其中 1、3 题为复习上节内容) 《课课练》P49-50 有关定义域内容 《精编》P81 5 P82 15、16、17、182