指数的运算性质 1一.教学目标:1.知识与技能:(1)理解分数指数幂和根式的概念; (2)掌握分数指数幂和根式之间的互化; (3)掌握分数指数幂的运算性质; (4)培养学生观察分析、抽象等的能力.2.过程与方法:通过与初中所学的知识进行类比,分数指数幂的概念,进而学习指数幂的性质.3.情态与价值 (1)培养学生观察分析,抽象的能力,渗透“转化”的数学思想;(2)通过运算训练,养成学生严谨治学,一丝不苟的学习习惯;(3 )让学生体验数学的简洁美和统一美.二.重点、难点1.教学重点:(1)分数指数幂和根式概念的理解; (2)掌握并运用分数指数幂的运算性质;2.教学难点:分数指数幂及根式概念的理解三.学法 1.学法:讲授法、讨论法、类比分析法及发现法提问:1.习初中时的整数指数幂,运算性质?什么叫实数?有理数,无理数统称实数.2.观察以下式子,并总结出规律:>0① ② ③ ④小结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式,(分数指数幂形式).根式的被开方数不能被根指数整除时,根式是否也可以写成分数指数幂的形式.如:1即:为此,我们规定正数的分数指数幂的意义为:正数的定负分数指数幂的意义与负整数幂的意义相同.即:规定:0 的正分数指数幂等于 0,0 的负分数指数幂无意义.说明:规定好分数指数幂后,根式与分数指数幂是可以互换的,分数指数幂只是根式的一种新的写法,而不是由于整数指数幂,分数指数幂都有意义,因此,有理数指数幂是有意义的,整数指数幂的运算性质, 3.例题(1).(例 2)求 值解:① ② ③ ④(2).(P 60,例 3)用分数指数幂的形式表或下列各式(>0)解: 分析:先把根式化为分数指数幂,再由运算性质来运算.课堂练习: 第 1,2,3,4 题补充练习:21. 计算:的结果2. 若小结:1.分数指数是根式的另一种写法.2.无理数指数幂表示一个确定的实数.3.掌握好分数指数幂的运算性质,其与整数指数幂的运算性质是一致的.3