3.2.1 —3.2.2 古典概型及随机数的产生(第四、五课时)一、教学目标:1、知识与技能:(1)正确理解古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;(2)掌握古典概型的概率计算公式:P(A)=总的基本事件个数包含的基本事件个数A(3)了解随机数的概念;(4)利用计算机产生随机数,并能直接统计出频数与频率。2、过程与方法:(1)通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。3、情感态度与价值观:通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点.二、重点与难点:1、正确理解掌握古典概型及其概率公式;2、正确理解随机数的概念,并能应用计算机产生随机数.三、学法与教学用具:1、与学生共同探讨,应用数学解决现实问题;2、通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯.四、教学设想:1、创设情境:(1)掷一枚质地均匀的硬币,结果只有 2 个,即“正面朝上”或“反面朝上”,它们都是随机事件。(2)一个盒子中有 10 个完全相同的球,分别标以号码 1,2,3,…,10,从中任取一球,只有 10 种不同的结果,即标号为 1,2,3…,10。师生共同探讨:根据上述情况,你能发现它们有什么共同特点?2、基本概念:(1)基本事件、古典概率模型、随机数、伪随机数的概念见课本 P121~126;(2)古典概型的概率计算公式:P(A)=总的基本事件个数包含的基本事件个数A.3、例题分析:课本例题略例 1 掷一颗骰子,观察掷出的点数,求掷得奇数点的概率。分析:掷骰子有 6 个基本事件,具有有限性和等可能性,因此是古典概型。解:这个试验的基本事件共有 6 个,即(出现 1 点)、(出现 2 点)……、(出现 6 点)所以基本事件数 n=6,事件 A=(掷得奇数点)=(出现 1 点,出现 3 点,出现 5 点),其包含的基本事件数 m=3所以,P(A)= nm = 63 = 21 =0.5小结:利用古典概型的计算公式时应注意两点:(1)所有的基本事件必须是互斥的;(2)m 为事件 A 所包含的基本事件数,求 m 值时,要做到不重不漏。例 2 从含有两件正品 a1,a2和一件次品 b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有...