电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

【创新方案】2013年高考数学一轮复习 第八篇 立体几何 第2讲 空间几何体的表面积与体积教案 理 新人教版

【创新方案】2013年高考数学一轮复习 第八篇 立体几何 第2讲 空间几何体的表面积与体积教案 理 新人教版_第1页
1/6
【创新方案】2013年高考数学一轮复习 第八篇 立体几何 第2讲 空间几何体的表面积与体积教案 理 新人教版_第2页
2/6
【创新方案】2013年高考数学一轮复习 第八篇 立体几何 第2讲 空间几何体的表面积与体积教案 理 新人教版_第3页
3/6
第 2 讲 空间几何体的表面积与体积【2013 年高考会这样考】考查柱、锥、台、球的体积和表面积,由原来的简单公式套用渐渐变为与三视图及柱、锥与球的接切问题相结合,难度有所增大.【复习指导】本讲复习时,熟记棱柱、棱锥、圆柱、圆锥的表面积和体积公式,运用这些公式解决一些简单的问题.基础梳理1.柱、锥、台和球的侧面积和体积面 积体 积圆柱S 侧=2π rh V=Sh=πr2h圆锥S 侧=π rl V=Sh=πr2h=πr2圆台S 侧=π(r1+r2)lV=(S 上+S 下+)h=π(r+r+r1r2)h直棱柱S 侧=ChV=Sh正棱锥S 侧=Ch′V=Sh正棱台S 侧=(C+C′)h′V=(S 上+S 下+)h球S 球面=4π R 2 V=πR32.几何体的表面积(1)棱柱、棱锥、棱台的表面积就是各面面积之和.(2)圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形;它们的表面积等于侧面积与底面面积之和.两种方法 (1) 解与球有关的组合体问题的方法,一种是内切,一种是外接.解题时要认真分析图形, 明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.球与旋转体的组合,通常作它们的轴截面进行解题,球与多面体的组合,通过多面体的一条侧棱和球心或“切点”、“接点”作出截面图.(2) 等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形 ( 或几何体 ) 的面积 ( 或体积 ) 通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特 别是在求三角形的高和三棱锥的高.这一方法回避了具体通过作图得到三角形 ( 或三棱锥 ) 的高,而通过直接计算得到高的数值.双基自测1.(人教 A 版教材习题改编)圆柱的一个底面积为 S,侧面展开图是一个正方形,那么这个圆柱的侧面积是( ).A.4πS B.2πS1C.πS D.πS解析 设圆柱底面圆的半径为 r,高为 h,则 r= ,又 h=2πr=2,∴S 圆柱侧=(2)2=4πS.答案 A2.(2012·东北三校联考)设长方体的长、宽、高分别为 2a、a、a,其顶点都在一个球面上,则该球的表面积为( ).A.3πa2 B.6πa2 C.12πa2 D.24πa2解析 由于长方体的长、宽、高分别为 2a、a、a,则长方体的体对角线长为=a.又长方体外接球的直径 2R 等于长方体的体对角线,∴2R=a.∴S 球=4πR2=6πa2.答案 B3.(201...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

【创新方案】2013年高考数学一轮复习 第八篇 立体几何 第2讲 空间几何体的表面积与体积教案 理 新人教版

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部