§3.3.1 简单的线性规划问题(1) 学习目标 1. 巩固二元一次不等式和二元一次不等式组所表示的平面区域;2. 能根据实际问题中的已知条件,找出约束条件. 学习过程 一、课前准备阅读课本P87至P88的探究找出目标函数,线性目标函数,线性规划,可行解,可行域的定义.二、新课导学※ 学习探究在生活、生产中,经常会遇到资源利用、人力调配、生产安排的等问题,如:某工厂有 A、B 两种配件生产甲、乙两种产品,每生产一件甲产品使用 4 个 A 配件耗时1h,每生产一件乙产品使用 4 个 B 配件耗时 2h,该厂每天最多可从配件厂获得 16 个 A 配件和12 个 B 配件,按每天 8h 计算,该厂所有可能的日生产安排是什么?(1)用不等式组表示问题中的限制条件:设甲、乙两种产品分别生产、件,由已知条件可得二元一次不等式组:(2)画出不等式组所表示的平面区域:注意:在平面区域内的必须是整数点.(3)提出新问题:进一步,若生产一件甲产品获利 2 万元,生产一件乙产品获利 3 万元,采用哪种生产安排利润最大?(4)尝试解答:(5)获得结果:新知:线性规划的有关概念:① 线性约束条件:在上述问题中,不等式组是一组变量 x、y 的约束条件,这组约束条件都是关于 x、y 的一次不等式,故又称线性约束条件.② 线性目标函数:关于 x、y 的一次式 z=2x+y 是欲达到最大值或最小值所涉及的变量 x、y 的解析式,叫线性目标函数.③ 线性规划问题:一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.④ 可行解、可行域和最优解:满足线性约束条件的解叫可行解.由所有可行解组成的集合叫做可行域.使目标函数取得最大或最小值的可行解叫线性规划问题的最优解.※ 典型例题 例 1 在探究中若生产一件甲产品获利 3 万元,生产一件乙产品获利 2 万元,问如何安排生用心 爱心 专心1产才能获得最大利润?※ 动手试试: 求的最大值,其中、满足约束条件三、总结提升※ 学习小结用图解法解决简单的线性规划问题的基本步骤:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解※ 当堂检测(时量:5 分钟 满分:10 分)计分:1. 目标函数,将其看成直线方程时,的意义是( ).A.该直线的横截距 B.该直线的纵截距C.该直线的纵截距的一半的相反数在于 D.该直线的纵截距的两倍的相反...