2.1.1 椭圆及其标准方程(教师用书独具)●三维目标1.知识与技能(1)了解椭圆的实际背景,经历从具体情景中抽象出椭圆模型的过程;(2)使学生理解椭圆的定义,掌握椭圆的标准方程及其推导过程.2.过程与方法(1)让学生亲身经历椭圆定义和标准方程的获取过程,掌握求曲线方程的方法和数形结合的思想;(2)学会用运动变化的观点研究问题,提高运用坐标法解决几何问题的能力.3.情感、态度与价值观(1)通过主动探究、合作学习,感受探索的乐趣与成功的喜悦;培养学生认真参与、积极交流的主体意识和乐于探索创新的科学精神;(2)通过椭圆知识的学习,进一步体会到数学知识的和谐美、几何图形的对称美,提高学生的审美情趣.●重点、难点重点:椭圆定义及其标准方程.难点:椭圆标准方程的推导过程.椭圆定义是通过它的形成过程进行定义的,揭示了椭圆的本质属性,也是椭圆方程建立的基石.这给学生提供动手操作、合作学习的机会,通过实例使学生去探究椭圆的形成过程,进而顺理成章的可以推导出椭圆标准方程,以实现重、难点的化解与突破.(教师用书独具)●教学建议 本节课宜采取的教学方法是“问题诱导—启发讨论—探索结果”以及“直观观察—归纳抽象—总结规律”的一种探究式教学方法,注重“引、思、探、练”的结合.引导学生学习方式发生转变,采用“激发兴趣、主动参与、积极体验、自主探究”的学习方式,形成师生互动的教学氛围.学法方面,通过利用圆的定义及圆的方程的推导过程,从而启发椭圆的定义及椭圆的标1准方程的推导,让学生体会到类比思想的应用;通过利用椭圆定义探索椭圆方程的过程,指导学生进一步理解数形结合思想,产生主动运用的意识;通过揭示因椭圆位置的不确定性所引起的分类讨论,进行分类讨论思想运用的指导.●教学流程⇒⇒⇒⇒⇒⇒⇒(对应学生用书第 19 页)课标解读1.掌握椭圆的定义会用待定系数法求椭圆的标准方程.(重点)2.了解椭圆标准方程的推导、坐标法的应用.(难点)椭圆的定义【问题导思】 1.取一条定长的细绳,把它的两端都固定在图板的同一点处,套上铅笔,拉紧绳子,移动笔尖,这时能在图板上画出一个圆.如果把细绳的两端拉开一段距离,分别固定在图板的两点处(如图)套上铅笔,拉紧绳子,移动笔尖,画出什么样的一个图形?【提示】 椭圆.2.在上述画出椭圆的过程中,你能说出笔尖(动点)满足的几何条件吗?【提示】 笔尖(动点)到两定点(绳端点的固定点)的距离之和始终等于绳长.把平面内与两个定点 F1...