3.1.1 变化率问题3.1.2 导数的概念(教师用书独具)●三维目标 1.知识与技能通过大量的实例的分析,让学生经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数.2.过程与方法通过动手计算培养学生观察、分析、比较和归纳能力,通过问题的探究体会逼近、类比、以已知探求未知、从特殊到一般的数学思想方法.3.情感、态度与价值观学生在从平均变化率到瞬时变化率的探索过程中,通过动手算、动脑思和集体合作讨论,发展思维能力,树立敢于战胜困难的信息,养成主动获取知识和敢于探索求知的习惯,激发求知欲,增强合作交流意识.●重点、难点重点:了解导数概念的形成,理解导数有内涵.难点:在平均变化率的基础上探求瞬时变化率,深刻理解导数的内涵.通过列举大量实例增强学生对导数概念形成的理解,以化解重点;通过逼近的方法,引导学生观察来突破难点.(教师用书独具)●教学建议 学生对平均变化率已有了很好的认识,同时在物理课程中已学习过瞬时速度,因此,学生已经具备了一定的认知基础,于是,在教学设计中,宜采用相互讨论、探究规律和引导发现的教学方法,本着为学生发展的原则,通过师生互动、共同探索,形成概念,并学以致用.在学生的认知基础上,为了让学生明确导数就是瞬时变化率,函数 f(x)在 x=x0处的导数反映了函数 f(x)在 x=x0处附近变化的快慢,从而更好地理解导数的概念.在学法指导上,应回避了学生较难理解的极限思想,而是通过让学生体验逼近的思想,让他们通过自主探究,发现导数的内涵.使学生在学习过程中探究能力,分析问题、解决问题的能力都得到了不同程度1的提升.●教学流程⇒⇒⇒⇒⇒⇒⇒(对应学生用书第 45 页)课标解读1.理解函数在某点附近的平均变化率.(重点)2.会求函数在某点处的导数.(难点)3.了解平均变化率与瞬时变化率的关系.(易混点)函数的变化率【问题导思】 实例:(1)当你吹气球时会发现随着气球内空气容量的增加,气球的半径增加的会越来越慢.(2)从高空放下一件物体,随着时间的变化,物体下降的速度会越来越快.1.如何用数学的观点刻画物体运动的快慢?【提示】 可以运用平均变化率来刻画.2.实例(2)中,当 t1≈t2时刻时,平均变化率有什么样的特点?【提示】 平均变化率接近 t1或 t2时刻的速度.1.函数 y=f(x)从 x1到 x2的平均变化率(1)定义式:=.(2)实质:函数值的改变量与自变量的改变量之比.(3)作用:刻画函数值在区间[...