第二章 平面向量2.1平面向量的实际背景及基本概念2.1.1 向量的物理背景与概念2.1.2 向量的几何表示2.1.3 相等向量与共线向量●三维目标1.知识与技能(1)了解向量的实际背景,理解平面向量的概念和向量的几何表示.(2)掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念.(3)学会区分平行向量、相等向量和共线向量.2.过程与方法通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别.3.情感、态度与价值观通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力.●重点、难点重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.难点:向量的概念,平行向量、相等向量和共线向量的区别和联系.●教学建议 1.本节的教学应当特别注意从向量的物理背景、几何背景入手,从学生熟悉的矢量概念引出向量概念,还可以要求学生自己举出一些“既有大小,又有方向的量”,从而使学生更好地把握向量的特点.2.本节介绍了两种向量的表示方法:几何表示和字母表示.几何表示为用向量处理几何问题打下了基础,而字母表示则利于向量运算,这两种方法需要学生熟练掌握.教科书用黑体字母表示向量,如 a,在手写时可用a表示.用有向线段表示向量时,要提醒学生注意AB的方向是由点 A 指向点 B,点 A 是向量的起点.3.相等向量是长度相等且方向相同的向量,相等向量是一类向量的集合.任何一组平行向量都可以移动到同一直线上,因此平行向量与共线向量是等价的,这一点值得特别注意.还要注意平行向量与平行线段的区别.1共线向量和平行向量是研究向量的基础,由此可以将一组平行向量平移(不改变大小和方向)到一条直线上,这给问题的研究带来方便.教学中,要使学生体会两个共线向量并不一定要在一条直线上,只要两个向量平行就是共线向量,当然,在同一直线上的向量也是平行向量.要避免向量的平行、共线与平面几何中直线、线段的平行和共线相混淆,教学中可以通过对具体例子的辨析来正确掌握概念.教学中,可以借助信息技术,通过向量的平移来说明向量的相等与起点无关.讲解中要求学生辨析“向量就是有向线段,有向线段就是向量”的说法是否正确,目的是引导学生体会向量只与方向及模的大小有关而与起点的位置无关,但有向线段不仅与方向、长度有关,也与起点的位置有关.●教学流程⇒⇒⇒⇒⇒⇒⇒(见学生用书第 34 页)课标解读1.理解向量的有关概念及向...