第四章 函数应用§1函数与方程1.1 利用函数性质判定方程解的存在(教师用书独具)●三维目标1.知识与技能(1)了解函数零点的概念,领会方程的根与函数零点之间的关系.(2)掌握函数零点存在的方法.(3)能结合图像求解函数零点问题.2.过程与方法通过观察二次函数图像,并计算函数在区间端点上的函数值之积的特点,找到连续函数在某个区间上存在零点的判断方法.3.情感、态度与价值观在函数与方程的联系中体验数学中的转化思想的意义和价值.进一步拓展了学生的视野,使他们体会到数学当中不同内容之间的内在联系.●重点难点重点:连续函数在某区间上存在零点的判定方法.难点:发现与理解方程的根与函数零点的关系.通过对二次函数的图像的研究判断一元二次方程根的存在性以及根的个数.建立一元二次方程的根与相应的二次函数的零点的联系,然后由特殊到一般,将其推广到一般方程与相应的函数的情形.它既揭示了初中一元二次方程与相应的二次函数的内在联系,也引出对函数知识的总结拓展.之后将函数零点与方程的根的关系在利用二分法解方程中加以应用,通过建立函数模型以及模型的求解更全面地体现函数与方程的关系,逐步建立起函数与方程的联系.渗透“方程与函数” 思想.(教师用书独具)1●教学建议 教材选取“探究具体的一元二次方程根与其对应二次函数的图像与 x 轴的交点的横坐标之间的关系”作为内容的入口,其意图是让学生从熟悉的环境中发现新知识,使新知识与原知识形成联系.教学时尽量多给学生提供探究情景,让学生自己发现并归纳结论:一元二次方程 ax2+bx+c=0(a≠0)的根就是相应的二次函数 y=ax2+bx+c(a≠0)的图像与 x 轴交点的横坐标.值得注意的问题是:对于教材中给出了函数零点的判定定理,只要求学生理解并会用,而不要求学生证明.●教学流程通过实例分析:判断方程 x2-x-6=0 解的存在性,引出本节课课题⇒抽象概括出函数的零点的定义,根据定义完成例 1 及其变式训练⇒函数图像从 x 轴上方到下方或从 x 轴下方到上方都会穿过 x 轴,即图像连续且有使函数值为零的点的横坐标,那么对应方程一定有解⇒导出函数零点的存在定理,并由此完成例 2 及其变式训练⇒根据零点存在定理,解决二次函数根的分布问题,完成例 3 及其变式训练⇒归纳整理,进行课堂小结,整体认识本节课所学知识⇒完成当堂双基达标,巩固所学知识并进行反馈矫正(见学生用书第 63 页)课标解读1.了解函数零点的概念,领会方...