吉林省吉林市朝鲜族中学 2014 高中数学 2.4.1 平面向量数量积的物理背景及其含义(第 2 课时)学案(无答案)新人教 A 版必修 4学习目标1. 掌握数量积的性质;运算律。2. 掌握向量垂直的条件。学习重点掌握数量积的性质与运算律,并能运用它们进行相关的判断和运算;学习难点能用平面向量的数量积处理有关长度、角度和垂直的问题. 学 习 内 容学法指导一.复习1.平面向量数量积的定义:2.平面向量数量积的几何意义:二.知识点:1.平面向量数量积的性质:设和都 是非零向量,是与的夹角,则⑴ 当与垂直时,,即 ;⑵ 当与同向时,,= ; 当与反向时,,= ;⑶ 当,即= ,或 ;⑷cos = ;⑸因为,所以 .2.平面向量数量积的运算律:已知向量与实数。(1)=___________;(2)=___________;(3)=_ __________。性质要掌握3. ⑴ ; ⑵ .二.典型例题例 1:若,,且与的夹角,求。变式 1:若,,且,求与的夹角。例 2:已知,且与不共线,为何值时,向量与互相垂直?变式 2:已知, 与的夹角为,为何值时,向量与互相垂直?三.当堂练习1.已知,,与的夹角为,求:⑴;⑵;⑶;(4).垂直的条件应用自主练习2. 已知与的夹角为,且,则为( ) A. B. C. D.3 已知,且与垂直,则与的夹角为( ) A. B. C. D.4. 已知,则= , = .