递推数列特征方程的发现一、问题的提出递推(迭代)是中学数学中一个非常重要的概念和方法,递推数列问题能力要求高,内在联系密切,蕴含着不少精妙的数学思想和方法。在递推数列中占有重要一席的斐波那契数列,又称兔子数列,是学生非常乐意探讨的递推问题,许多学生都会不约而同地向教师提出,这个数列有通项公式吗?如有,怎样求它的通项公式?笔者就曾碰到过一位喜爱钻研的学生,带着参考书上的解法而向我请教:已知斐波那契数列…),求通项公式。参考书上的解法是这样的:解 此数列对应特征方程为即,解得, 设此数列的通项公式为,由初始条件可知, ,解之得,所以。这位学生坦率地表示,尽管参考书上介绍了利用特征方程求通项公式的一些结论,用上述方法得到的通项公式也是正确的,但他还是“看不懂”。换句话说,这种解法的依据是什么?特征方程是怎样来的?我虽然深知这是特征方程惹的祸,但由于现行教材只字未提特征方程,我也从未在课堂上作过补充,如果将有关利用特征方程求递推数列通项的一些结论直接呈现出来,或者以“高考不作要求”为由来搪塞,学生是难以接受的,也是不负责任的。面对一头雾水的数学尖子,我在充分肯定其善于思考、勇于探索的可贵品质的同时,也在苦苦寻觅解答这一问题的良策。其后不久,一次偶然的数学探究活动,竟使这一长期困惑我们教学活动的尴尬问题迎刃而解。二、研究与探索问题的解决源于对一阶线性递推数列通项公式的探求:若数列满足其通项公式的求法一般采用如下的参数法,将递推数列转化为等比数列:设 ,用心 爱心 专心 115 号编辑令,即,当时可得,知数列是以 为公比的等比数列,将代入并整理,得.将上述参数法类比到二阶线性递推数列能得到什么结论?仿上,我们来探求数列的特征:不妨设,则, 令 ①(1)若方程组①有两组不同的实数解,则, ,即、分别是公比为、的等比数列,由等比数列性质可得, , 由上两式消去可得.(2)若方程组①有两组相等的解,易证此时,则用心 爱心 专心 115 号编辑…,,即是等差数列,由等差数列性质可知,所以.(限于学生知识水平,若方程组①有一对共轭虚根的情况略)这样,我们通过参数方法,将递推数列转化为等比(差)数列,从而求得二阶线性递推数列的通项,若将方程组①消去 即得,显然、 就是方程的两根,我们不妨称此方程为二阶线性递推数列的特征方程,于是我们就得到了散见于各种数学参考资料的如下结论:设递推公式为其特征方程为,1、 若...