3.2.1 对数及其运算(三)教学目标:掌握对数的换底公式教学重点:掌握对数的换底公式教学过程:1、首先可以通过实例研究当一个对数式的底数改变时,整个对数式会发生什么变化?如求 设 ,写成指数式是 ,取以 为底的对数得 即.在这个等式中,底数 3 变成 后对数式将变成等式右边的式子.一般地 关于对数换底公式的证明方法有很多,这里可以仿照刚才具体的例子计算过程证明对数换底公式,证明的基本思路就是借助指数式.换底公式的意义是把一个对数式的底数改变可将不同底问题化为同底,便于使用运算法则.由换底公式可得:(1) . (2) .( 2、例题:1、 证明:证明:设 ,,,则:,,,1∴,从而 ;∵ , ∴ ,即:。(获证)2、已知:求证:证明:由换底公式 ,由等比定理得:,∴,∴。3、设,且,1 求证:;2 比较的大小。1 证明:设,∵,∴,取对数得: ,,,∴;22 ,∴,又,∴, ∴。小结:本节课学习了对数的换底公式课后作业:习题 2.2A 组第 11 、12 题.3