江苏省涟水县第一中学高中数学 第三章第 1 课 平均变化率教学案 苏教版选修 1-1班级:高二( )班 姓名:____________教学目标:1.通过对一些实例的直观感知,构建平均变化率的概念,并初步运用和加深理解利用平均变化率来刻画变量变化得快与慢的原理;2.通过从实际生活背景中构建数学模型来引入平均变化率,领会以直代曲和数形结合的思想,培养学生的抽象思维与归纳综合的能力,提升学生的数学思维与数学素养;3.培养学生关注身边的数学,并能从数学的视角来分析问题、解决问题,体验数学发展的历程,感受数形统一的辨证思想.教学重点:会利用平均变化率来刻画变量变化得快与慢.教学难点:对平均变化率概念的本质的理解;对生活现象作出数学解释.教学过程:一、问题情境1.问题情境. 法国《队报》网站的文章称刘翔以不可思议的速度统治了赛场.这名 21 岁的中国人跑的几乎比炮弹还快,赛道上显示的 12.94 秒的成绩已经打破了 12.95 秒的奥运会纪录,但经过验证他是以 12.91 秒的成绩追平了世界纪录,他的平均速度达到了 8.52m/s.某人走路的第 1 秒到第 34 秒的位移时间图象如图所示:观察图象,回答问题:问题 1 从 A 到 B 的位移是多少?从 B 到 C 的位移是多少?问题 2 从 A 到 B 这一段与从 B 到 C 这一段,你感觉哪一段的位移变化得较快? 2.学生活动.案例中,从 B 到 C 位移“陡增”,这是我们从图象中的直观感觉,那么如何量化陡峭程度呢?(1)由点 B 上升到 C 点必须考察CByy的大小,但仅注意到CByy的大小能否精确量化BC 段陡峭的程度?为什么?(2)还必须考察什么量?在考察CByy的同时必须考察CBxx.(3)曲线上 BC 之间的一段几乎成了直线,由此联想到如何量化直线倾斜程度?二、建构数学t / s20 3034 2 10 20 30 A (1, 3.5) B (32, 18.6) 0 S/m2 10 C(34, 33.4)11.一般地,函数 f x 在区间12,x x上的平均变化率为 2121f xf xxx.注意:平均变化率不能脱离区间而言.2.平均变化率是曲线陡峭程度“数量化”.曲线陡峭程度是平均变化率“视觉化”.思考:(1)若设12xxx,即将x 看作是对于1x 的一个增量, )()(12xfxfy,则)(xf在12,x x平均变化率为xxfxxfxyxxxfxf)()()()(111212.(2))(xf在12,x x平均变化率的几何意义即为区间两端点连线所在直线斜率.三、数学...