浙江省衢州市仲尼中学高一数学《1.1.3 集合的基本运算》教案教材分析 本节是人教 A 版《普通高中课程标准实验教科书数学必修 1》第一章第一节第三部分集合的基本运算第 1 课时.主要介绍集合的两类基本运算——并集和交集,是对集合基本知识的深入研究.集合作为现代数学的基本语言,它可以简洁、准确地表达数学内容,因而只有掌握和理解了集合的基本知识,学会用集合语言表示有关数学对象,才能进一步刻画函数概念.可见,此部分的学习是以后研究函数的必然要求.学情分析 针对本节课的教学内容,学生应掌握集合的概念与集合之间的关系。第一节的前面两部分已经学习了集合的概念与集合之间的关系,因此,本节课要在掌握了集合的概念与集合之间的关系的基础上,进一步学习集合之间的基本运算——并集和交集。教学目标1.理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集.2.能使用 Venn 图表达集合的运算,体会直观图示对理解抽象概念的作用.教学重点、难点重点:交集与并集概念. 难点:理解交集与并集的概念.符号之间的区别与联系.教学过程一、复习引入首先复习集合的概念与两个集合之间的关系。二、探究新课问题 1:我们知道,实数有加法运算。类比实数的加法运算,集合是否也有类似加法的运算呢?先来看两个例子,说出集合 C 与集合 A、B 之间的关系。(1) A={1,3,5}, B={2,4,6}, C={1,2,3,4,5,6};(2) A={x|x 是有理数}, B={x|x 是无理数}, C={x|x 是实数}。引导学生通过观察,类比.思考和交流,得出结论。并且强调集合也有运算。l.并集—般地,由所有属于集合 A 或属于集合 B 的元素所组成的集合,称为集合 A 与 B 的并集. 记作:A∪B. (读作:“A 并 B”).即A∪B={x|x∈A,或 x∈B}.1用 Venn 图表示如下:那么,问题 1 中的集合 A、B、C之间的关系用符号表示如下:集合 A 与 B 的并集是 C,即 A∪B=C.练习 检查和反馈(1) 设 A={4,5,6,8},B={3,5,7,8},求 A∪B.(2) 设集合 A={x|-1