重庆市万州分水中学高中数学 3.2.2 函数模型的应用实例(2)学案 新人教 A 版必修 1 学习目标 1. 通过一些实例,来感受一次函数、二次函数、指数函数、对数函数以及幂函数的广泛应用,体会解决实际问题中建立函数模型的过程,从而进一步加深对这些函数的理解与应用;2. 初步了解对统计数据表的分析与处理. 学习过程 一、课前准备(预习教材 P104~ P106,找出疑惑之处)阅读:2003 年 5 月 8 日,西安交通大学医学院紧急启动“建立非典流行趋势预测与控制策略数学模型”研究项目,马知恩教授率领一批专家昼夜攻关,于 5 月 19 日初步完成了第一批成果,并制成了要供决策部门参考的应用软件.这一数学模型利用实际数据拟合参数,并对全国和北京、山西等地的疫情进行了计算仿真,结果指出,将患者及时隔离对于抗击非典至关重要、分析报 告说,就全国而论,菲非典病人延迟隔离 1 天,就医人数将增加 1000 人左右,推迟两天 约增加工能力 100 人左右;若外界输入 1000 人中包含一个病人和一个潜伏病人,将增加患病人数 100 人左右;若 4 月21 日以后,政府示采取隔离措施,则高峰期病人人数将达 60 万人.这项研究在充分考虑传染病控制中心每日工资发布的 数据,建 立了非典流行趋势预测动力学模型和优化控制模型,并对非典未来的流行趋势做了分析预测.二、新课导学※ 典型例题例 1 某桶装水经营部每天的房租、人员工资等固定成本为 200 元,每桶水的进价是 5 元. 销售单价与日均销售量的关系如下表所示:销售单价/元6789101112日均销售量/桶480440400360320280240请根据以上数据作出分析,这个经营部怎样定价才能获得最大利润?变式:某农家旅游公司有客房 300 间,每间日房租为 20 元,每天都客满. 公司欲提高档次,并提高租金,如果每间客房日增加 2 元,客房出租数就会减少 10 间. 若不考虑其他因素,旅社将房间租金提高到多少时,每天客房的租金总收入最高?小结:找出实际问题中涉及的函数变量→根据变量间的关系建立函数模型→利用模型解决实际问题→小结:二次函数模型。例 2 某地区不同身高的未成年男性的体重平均值如下表(身高:cm;体重:kg)身高60708090100110体重6.137.909.9912.1515.0217.50身高120130140150160170体重20.9226.8631.1138.8547.2555.05(1)根据表中提供的数据,建立恰当的函数模型,使它能比较近似地反映这个地区未成年男性体重与身高 ykg 与身高 xcm 的...