北京市重点中学 2025 届高三 9 月第一次月考联考数学理高 三 数 学(理)2025.09(测试时间 120 分钟)一、选择题:本大题共 8 小题,每小题 5 分,共 40 分. 1.已知集合,,则集合等于 ( )A.B.C.D.2.命题“对任意的”的否定是 ( )A.不存在 B.存在C.存在 D. 对任意的3. 假如对于任意实数,表示不超过的最大整数. 例如,. 那么“”是“”的 ( )(A)充分而不必要条件 (B)必要而不充分条件(C)充分必要条件 (D)既不充分也不必要条件4. 设函数 若是奇函数,则的值是 ( )A. B. C. D. 45.函数 ( )A.是奇函数且在上是增函数 B.是奇函数且在上是减函数C.是偶函数且在上是增函数 D.是偶函数且在上是减函数6.已知,则下列不等式成立的是( )A.B.C.D.7.设(其中), 则大小关系为( )(A) (B) (C) (D)8.在 R 上定义运算若不等式对任意实数成立,则( )A. B. C. D. 二、填空题:本大题共 6 小题,每小题 5 分,共 30 分. 把答案填在题中横线上 .9.已知,则=__________.10.已知幂函数的图象过(4,2)点,则__________.11 . 设 集 合, 则 集 合是_______________________.12. 将,,按从大到小的顺序排列应该是 . 13.定义在 R 上的函数,则 .14.若函数有两个零点,则实数的取值范围是 .三、解答题:本大题共 6 小题,共 80 分. 解答应写出文字说明,证明过程或演算步骤.15. 设集合,,,若,,(I)求实数的取值集合.(Ⅱ)求实数的取值集合.16.(本小题满分 14 分)已知函数.(Ⅰ)写出的单调区间;(Ⅱ)解不等式;(Ⅲ)设,求在上的最大值.17.(本小题满分 14 分)已知函数的图象过点,且在点处的切线斜率为8.(Ⅰ)求的值;(Ⅱ)求函数的单调区间;18.(本小题满分 12 分)已知函数(I)推断的奇偶性(直接写出你的结论)(II)若在是增函数,求实数的范围 19.已知函数.(I)求的单调区间;(II)求在上的最大值20.已知函数,当点是的图象上的点时,点是的图象上的点.(I)写出的表达式; (II)当时,求的取值范围; (Ⅲ)当在(Ⅱ)所给范围取值时,求的最大值.高 三 数 学(理)(测试时间 120 分钟)一、选择题:本大题共 8 小题,每小题 5 分,共 40 分. 1.已知集合,,则集合等于 ( C )A.B.C.D.2.命题“对任意的”的否定是 ( C )A.不存在 B.存在C.存在...