专题 07 函数的图象【考点剖析】1.命题方向预测:从近几年的高考试题来看,主要考查图象的辨识以及利用图象研究函数的性质、方程及不等式的解,多以选择题、填空题的形式出现,属中低档题,主要考查基本初等函数的图象及应用.预测 2019 年高考对本节内容的考查仍将以函数图象识别与函数图象的应用为主,依然体现“有图考图”“无图考图”的原则,题型仍为选择题或填空题的形式.备考时要求熟练掌握各种基本初等函数的图象及性质,增强函数性质的应用意识,另外还应熟练掌握各种图象变换的法则.2.课本结论总结:(1)画函数图象的一般方法① 描点法:当函数表达式(或变形后的表达式)是熟悉的基本函数时,就可根据这些函数的特征直接作出,其步骤为:先确定函数的定义域,化简给定的函数解析式,再根据化简后的函数解析式研究函数的值域、单调性、奇偶性、对称性、极值、最值,再根据函数的特点取值、列表,描点,连线,注意取点,一定要包括关键点,如极值点、与轴的交点等.② 图象变换法:若函数图象可由某个基本函数的图象经过平移、翻折、对称得到,可利用图象变换作出,但要注意变换顺序,对不能直接找到熟悉的基本函数的要先变形,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.(2)常见的图象变换① 平移变换:左右平移:函数的图象可由函数的图象向左(+)或向右(—)平移个单位得到;上下平移:()的图象可由函数的图象向上(+)或向下(—)平移个单位得到;② 伸缩变换函数是将函数图象上各点的纵坐标不变,横坐标变为原来的得到;函数是将函数图象上各点的横坐标不变,纵坐标变为原来的 A 倍的得到;③ 对称变换函数图象关于轴对称得到函数图象;函数图象关于轴对称得到函数图象;函数图象关于原点对称得到函数图象;函数图象关于直线对称得到函数为图象.④ 翻折变换函数的图象这样得到:函数在轴右侧的图象保持不变,左侧的图象去掉后,再将右侧的图象翻折到轴左侧(函数为偶函数,其图象关于轴对称);函数的图象是这样得到的:函数在轴上方的图象保持不变,把下方的图象关于轴对称到上方(注意到函数的函数值都大于零).3.名师二级结论:(1)函数图象的几个应用① 判断函数的奇偶性、确定单调区间:图象关于原点对称是奇函数,图象关于 y 轴对称是偶函数.图象从左到右上升段对应的的取值范围是增区间,下降对应的的取值范围是减区间.② 方程的根就是函数与函数图象交点的横坐标.③ 不等式的解集...