微积分公式Dx si n x=cos x c o s x = -si n x t a n x = sec2 x co t x = -csc2 x sec x = sec x t an x c sc x = -csc x cot x s in x dx = —cos x + C cos x dx = s in x + C tan x d x = ln |s e c x | + C c ot x d x = ln |sin x | + C sec x dx = ln |sec x + t an x | + C c sc x dx = ln |cs c x – cot x | + Csi n-1(-x) = —s i n—1 xc o s-1(-x) = — co s—1 xtan-1(-x) = —tan-1 xcot-1(-x) = - co t-1 xse c-1(-x) = - sec-1 xc sc—1(-x) = — c sc-1 xD x s i n-1 ()= c os-1 ()=tan-1 ()=c o t—1 ()=sec—1 ()=cs c-1 (x/a)= sin—1 x d x = x sin-1 x++C c os-1 x d x = x c o s-1 x-+C t a n-1 x d x = x t a n—1 x—½ln (1+x2)+C c o t-1 x d x = x cot—1 x+½ln (1+x2)+C sec-1 x dx = x sec-1 x- ln |x+|+C cs c-1 x dx = x csc-1 x+ ln |x+|+Cs inh—1 ()= ln (x+) x Rcosh-1 ()=ln (x+) x≧1tanh-1 ()=ln () |x| <1c ot h-1 ()=ln () |x| 〉1s e c h-1()=ln(+)0≦x≦1cs c h—1 ()=ln(+) |x| >0D x si n h x = c o s h x c o s h x = s i n h x t an h x = se c h 2 x c ot h x = -csch 2 x se ch x = —se c h x t an h x csch x = -c s ch x coth x sinh x d x = co s h x + C cosh x d x = si n h x + C t a nh x d x = ln | co s h x |+ C c o th x d x = ln | sin h x | + C s e ch x dx = —2t a n-1 (e-x) + C csch x d x = 2 ln || + Cduv = ud v + vd u du v = uv = ud v + vdu→ u dv = uv — vd ucos2θ-sin2θ=cos2θcos2θ+ s i n 2θ=1cosh...