电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

(全国通用)高考数学大一轮复习 第八章 立体几何与空间向量 8.7 立体几何中的向量方法(一)证明平行与垂直学案-人教版高三全册数学学案

(全国通用)高考数学大一轮复习 第八章 立体几何与空间向量 8.7 立体几何中的向量方法(一)证明平行与垂直学案-人教版高三全册数学学案_第1页
1/15
(全国通用)高考数学大一轮复习 第八章 立体几何与空间向量 8.7 立体几何中的向量方法(一)证明平行与垂直学案-人教版高三全册数学学案_第2页
2/15
(全国通用)高考数学大一轮复习 第八章 立体几何与空间向量 8.7 立体几何中的向量方法(一)证明平行与垂直学案-人教版高三全册数学学案_第3页
3/15
§8.7 立体几何中的向量方法(一)——证明平行与垂直最新考纲考情考向分析1.理解直线的方向向量及平面的法向量.2.能用向量语言表述线线、线面、面面的平行和垂直关系.3.能用向量方法证明立体几何中有关线面位置关系的一些简单定理.利用空间向量证明空间中的位置关系是近几年高考重点考查的内容,涉及直线的方向向量,平面的法向量及空间直线、平面之间位置关系的向量表示等内容.以解答题为主,主要考查空间直角坐标系的建立及空间向量坐标的运算能力及应用能力,有时也以探索论证题的形式出现.1.直线的方向向量与平面的法向量的确定(1)直线的方向向量:在直线上任取一非零向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设 a,b 是平面 α 内两不共线向量,n 为平面 α 的法向量,则求法向量的方程组为2.用向量证明空间中的平行关系(1)设直线 l1和 l2的方向向量分别为 v1和 v2,则 l1∥l2(或 l1与 l2重合)⇔v1∥v2.(2)设直线 l 的方向向量为 v,与平面 α 共面的两个不共线向量 v1和 v2,则 l∥α 或 l⊂α⇔存在两个实数 x,y,使 v=xv1+yv2.(3)设直线 l 的方向向量为 v,平面 α 的法向量为 u,则 l∥α 或 l⊂α⇔v⊥u.(4)设平面 α 和 β 的法向量分别为 u1,u2,则 α∥β⇔u1 ∥u2.3.用向量证明空间中的垂直关系(1)设直线 l1和 l2的方向向量分别为 v1和 v2,则 l1⊥l2⇔v1⊥v2⇔v1·v2=0.(2)设直线 l 的方向向量为 v,平面 α 的法向量为 u,则 l⊥α⇔v∥u.(3)设平面 α 和 β 的法向量分别为 u1和 u2,则 α⊥β⇔u1⊥u2⇔u1·u2=0.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)直线的方向向量是唯一确定的.( × )(2)平面的单位法向量是唯一确定的.( × )(3)若两平面的法向量平行,则两平面平行.( √ )(4)若两直线的方向向量不平行,则两直线不平行.( √ )(5)若 a∥b,则 a 所在直线与 b 所在直线平行.( × )(6)若空间向量 a 平行于平面 α,则 a 所在直线与平面 α 平行.( × )题组二 教材改编2.[P104T2]设 u,v 分别是平面 α,β 的法向量,u=(-2,2,5),当 v=(3,-2,2)时,α与 β 的位置关系为__________;当 v=(4,-4,-10)时,α 与 β 的位置关系为________.答案 α⊥β α∥β解析 当 v=(3,-2,2)时,u·v=(-2,2,5)·(3,-2,2)=0⇒α⊥β.当 v=(4...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

(全国通用)高考数学大一轮复习 第八章 立体几何与空间向量 8.7 立体几何中的向量方法(一)证明平行与垂直学案-人教版高三全册数学学案

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部