§1.2.1 几个常用函数导数学习目标 1.掌握四个公式,理解公式的证明过程;2.学会利用公式,求一些函数的导数;3.理解变化率的概念,解决一些物理上的简单问题.学习过程 一、课前准备(预习教材,找出疑惑之处)复习 1:导数的几何意义是:曲线上点()处的切线的斜率.因此,如果在点可导,则曲线在点()处的切线方程为 复习 2:求函数的导数的一般方法:(1)求函数的改变量 (2)求平均变化率 (3)取极限,得导数= = 二、新课导学 学习探究探究任务一:函数的导数.问题:如何求函数的导数新知:表示函数图象上每一点处的切线斜率为 .若表示路程关于时间的函数,则 ,可以解释为 即一直处于静止状态.试试: 求函数的导数反思:表示函数图象上每一点处的切线斜率为 .若表示路程关于时间的函数,则 ,可以解释为 探究任务二:在同一平面直角坐标系中,画出函数的图象,并根据导数定义,求它们的导数. (1)从图象上看,它们的导数分别表示什么?(2)这三个函数中,哪一个增加得最快?哪一个增加得最慢?(3)函数增(减)的快慢与什么有关? 典型例题例 1 求函数的导数变式: 求函数的导数小结:利用定义求导法是最基本的方法,必须熟记求导的三个步骤:作差,求商,取极限. 例 2 画出函数的图象.根据图象,描述它的变化情况,并求出曲线在点处的切线方程.变式 1:求出曲线在点处的切线方程.小结:利用导数求切线方程时,一定要判断所给点是否为切点,它们的求法是不同的.动手试试练 1. 求曲线的斜率等于 4 的切线方程.练 2. 求函数的导数三、总结提升学习小结1. 利用定义求导法是最基本的方法,必须熟记求导的三个步骤: , , .2. 利用导数求切线方程时,一定要判断所给点是否为切点,一定要记住它们的求法是不同的.知识拓展微积分的诞生具有划时代的意义,是数学史上的分水岭和转折点.关于微积分的地位,恩格斯是这样评价的:“在一切理论成就中,未必再有什么像 17 世纪下半叶微积分的发现那样被看作人类精神的纯粹的和惟一的功绩,那正是在这里.” 学习评价 当堂检测(时量:5 分钟 满分:10 分)计分:1.的导数是( )A.0 B.1 C.不存在 D.不确定2.已知,则( )A.0 B.2 C.6 D.93. 在曲线上的切线的倾斜角为的点为( )A. B. C. D.4. 过曲线上点且与过这点的切线平行的直线方程是 5. 物体的运动方程为,则物体在时的速度为 ,在时的速度为 .课后作业 1. 已知圆面积,根据导数定义求.