第 1 讲 分类加法计数原理与分步乘法计数原理最新考纲 1.理解分类加法计数原理和分步乘法计数原理;2.会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.知 识 梳 理1.分类加法计数原理完成一件事有两类不同的方案,在第 1 类方案中有 m 种不同的方法,在第 2 类方案中有 n 种不同的方法,那么完成这件事共有 N=m + n 种不同的方法.2.分步乘法计数原理完成一件事需要两个步骤,做第 1 步有 m 种不同的方法,做第 2 步有 n 种不同的方法,那么完成这件事共有 N=m × n 种不同的方法.3.分类加法和分步乘法计数原理,区别在于:分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤相互依存,只有各个步骤都完成了才算完成这件事.诊 断 自 测1.判断正误(在括号内打“√”或“×”)(1)在分类加法计数原理中,两类不同方案中的方法可以相同.( )(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.( )(3)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.( )(4)在分步乘法计数原理中,事情是分两步完成的,其中任何一个单独的步骤都能完成这件事.( )解析 分类加法计数原理,每类方案中的方法都是不同的,每一种方法都能完成这件事;分步乘法计数原理,每步的方法都是不同的,每步的方法只能完成这一步,不能完成这件事,所以(1),(4)均不正确.答案 (1)× (2)√ (3)√ (4)×2.从 3 名女同学和 2 名男同学中选 1 人主持主题班会,则不同的选法种数为( )A.6 B.5 C.3 D.2解析 5 个人中每一个都可主持,所以共有 5 种选法.答案 B3.(选修 2-3P28B2 改编)现有 4 种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有( )A.24 种 B.30 种C.36 种 D.48 种解析 需要先给 C 块着色,有 4 种结果;再给 A 块着色,有 3 种结果;再给 B 块着色,有 2 种结果;最后给 D 块着色,有 2 种结果,由分步乘法计数原理知共有 4×3×2×2=48(种).答案 D4.5 位同学报名参加两个课外活动小组,每位同学限报其中一个小组,则不同的报名方法有________种(用数字作答).解析 每位同学都有 2 种报名方法,因此,可分五步安排 5 名同学报名,由分步乘法计数原理,总的报名方法共 2×2×...